The Error Linear Complexity Spectrum as a Cryptographic Criterion of Boolean Functions
The error linear complexity spectrum constitutes a well-known cryptographic criterion for sequences, indicating how the linear complexity of the sequence decreases as the number of bits allowed to be modified per period increases. In this paper, via defining an association between <inline-formula...
Uložené v:
| Vydané v: | IEEE transactions on information theory Ročník 65; číslo 12; s. 8345 - 8356 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9448, 1557-9654 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The error linear complexity spectrum constitutes a well-known cryptographic criterion for sequences, indicating how the linear complexity of the sequence decreases as the number of bits allowed to be modified per period increases. In this paper, via defining an association between <inline-formula> <tex-math notation="LaTeX">2^{n} </tex-math></inline-formula>-periodic binary sequences and Boolean functions on <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> variables, it is shown that the error linear complexity spectrum also provides useful cryptographic information for the corresponding Boolean function <inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> - namely, it yields an upper bound on the minimum Hamming distance between <inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> and the set of functions depending on fewer number of variables. Therefore, the prominent Lauder-Paterson algorithm for computing the error linear complexity spectrum of a sequence may also be used for efficiently determining approximations of a Boolean function that depend on fewer number of variables. Moreover, it is also shown that, through this approach, low-degree approximations of a Boolean function can be also obtained in an efficient way. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0018-9448 1557-9654 |
| DOI: | 10.1109/TIT.2019.2933533 |