The Error Linear Complexity Spectrum as a Cryptographic Criterion of Boolean Functions

The error linear complexity spectrum constitutes a well-known cryptographic criterion for sequences, indicating how the linear complexity of the sequence decreases as the number of bits allowed to be modified per period increases. In this paper, via defining an association between <inline-formula...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 65; číslo 12; s. 8345 - 8356
Hlavní autoři: Limniotis, Konstantinos, Kolokotronis, Nicholas
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The error linear complexity spectrum constitutes a well-known cryptographic criterion for sequences, indicating how the linear complexity of the sequence decreases as the number of bits allowed to be modified per period increases. In this paper, via defining an association between <inline-formula> <tex-math notation="LaTeX">2^{n} </tex-math></inline-formula>-periodic binary sequences and Boolean functions on <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> variables, it is shown that the error linear complexity spectrum also provides useful cryptographic information for the corresponding Boolean function <inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> - namely, it yields an upper bound on the minimum Hamming distance between <inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> and the set of functions depending on fewer number of variables. Therefore, the prominent Lauder-Paterson algorithm for computing the error linear complexity spectrum of a sequence may also be used for efficiently determining approximations of a Boolean function that depend on fewer number of variables. Moreover, it is also shown that, through this approach, low-degree approximations of a Boolean function can be also obtained in an efficient way.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2933533