The Error Linear Complexity Spectrum as a Cryptographic Criterion of Boolean Functions

The error linear complexity spectrum constitutes a well-known cryptographic criterion for sequences, indicating how the linear complexity of the sequence decreases as the number of bits allowed to be modified per period increases. In this paper, via defining an association between <inline-formula...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information theory Vol. 65; no. 12; pp. 8345 - 8356
Main Authors: Limniotis, Konstantinos, Kolokotronis, Nicholas
Format: Journal Article
Language:English
Published: New York IEEE 01.12.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-9448, 1557-9654
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The error linear complexity spectrum constitutes a well-known cryptographic criterion for sequences, indicating how the linear complexity of the sequence decreases as the number of bits allowed to be modified per period increases. In this paper, via defining an association between <inline-formula> <tex-math notation="LaTeX">2^{n} </tex-math></inline-formula>-periodic binary sequences and Boolean functions on <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> variables, it is shown that the error linear complexity spectrum also provides useful cryptographic information for the corresponding Boolean function <inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> - namely, it yields an upper bound on the minimum Hamming distance between <inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> and the set of functions depending on fewer number of variables. Therefore, the prominent Lauder-Paterson algorithm for computing the error linear complexity spectrum of a sequence may also be used for efficiently determining approximations of a Boolean function that depend on fewer number of variables. Moreover, it is also shown that, through this approach, low-degree approximations of a Boolean function can be also obtained in an efficient way.
AbstractList The error linear complexity spectrum constitutes a well-known cryptographic criterion for sequences, indicating how the linear complexity of the sequence decreases as the number of bits allowed to be modified per period increases. In this paper, via defining an association between <inline-formula> <tex-math notation="LaTeX">2^{n} </tex-math></inline-formula>-periodic binary sequences and Boolean functions on <inline-formula> <tex-math notation="LaTeX">n </tex-math></inline-formula> variables, it is shown that the error linear complexity spectrum also provides useful cryptographic information for the corresponding Boolean function <inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> - namely, it yields an upper bound on the minimum Hamming distance between <inline-formula> <tex-math notation="LaTeX">f </tex-math></inline-formula> and the set of functions depending on fewer number of variables. Therefore, the prominent Lauder-Paterson algorithm for computing the error linear complexity spectrum of a sequence may also be used for efficiently determining approximations of a Boolean function that depend on fewer number of variables. Moreover, it is also shown that, through this approach, low-degree approximations of a Boolean function can be also obtained in an efficient way.
The error linear complexity spectrum constitutes a well-known cryptographic criterion for sequences, indicating how the linear complexity of the sequence decreases as the number of bits allowed to be modified per period increases. In this paper, via defining an association between [Formula Omitted]-periodic binary sequences and Boolean functions on [Formula Omitted] variables, it is shown that the error linear complexity spectrum also provides useful cryptographic information for the corresponding Boolean function [Formula Omitted] - namely, it yields an upper bound on the minimum Hamming distance between [Formula Omitted] and the set of functions depending on fewer number of variables. Therefore, the prominent Lauder-Paterson algorithm for computing the error linear complexity spectrum of a sequence may also be used for efficiently determining approximations of a Boolean function that depend on fewer number of variables. Moreover, it is also shown that, through this approach, low-degree approximations of a Boolean function can be also obtained in an efficient way.
Author Limniotis, Konstantinos
Kolokotronis, Nicholas
Author_xml – sequence: 1
  givenname: Konstantinos
  orcidid: 0000-0002-7663-7169
  surname: Limniotis
  fullname: Limniotis, Konstantinos
  email: klimn@di.uoa.gr
  organization: Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, University Campus, Athens, Greece
– sequence: 2
  givenname: Nicholas
  orcidid: 0000-0003-0660-8431
  surname: Kolokotronis
  fullname: Kolokotronis, Nicholas
  email: nkolok@uop.gr
  organization: Department of Informatics and Telecommunications, University of Peloponnese, Tripolis, Greece
BookMark eNo9kMFLwzAUxoNMcJveBS8Bz51Jk7TJUcumg4EHq9eQpq-uY2tq0oL7783Y8PT4Ht_33sdvhiad6wChe0oWlBL1VK7LRUqoWqSKMcHYFZpSIfJEZYJP0JQQKhPFubxBsxB2UXJB0yn6KreAl947jzdtB8bjwh36Pfy2wxF_9GAHPx6wCdjgwh_7wX17029bG1U7gG9dh12DX5zbg-nwauzsEHfhFl03Zh_g7jLn6HO1LIu3ZPP-ui6eN4lNOR8SSyvT8NrWijJrWZPyWlaqNg2tcmkzK9KK1CJTIJjMJK8yEUvnAsDWmSDA2Rw9nu_23v2MEAa9c6Pv4kudMpqJTOZURBc5u6x3IXhodO_bg_FHTYk-0dORnj7R0xd6MfJwjrQA8G-XuVScMPYHOY9tcQ
CODEN IETTAW
Cites_doi 10.1007/978-3-540-89255-7_26
10.1109/18.6037
10.1007/3-540-46885-4_53
10.1007/3-540-68339-9_20
10.1109/18.243455
10.1109/TIT.2007.915704
10.1007/3-540-45539-6_35
10.1109/TIT.1983.1056619
10.1007/s001450010007
10.1007/3-540-39805-8_12
10.1109/TIT.2004.824913
10.1109/18.825845
10.1007/978-3-540-74619-5_5
10.1109/TIT.2009.2030452
10.1049/iet-ifs:20060153
10.1007/3-540-54973-0
10.1017/CBO9780511780448.011
10.1109/ITW.2002.1115421
10.1109/TIT.2009.2027495
10.1109/TIT.2002.806136
10.1007/11799313_1
10.1007/3-540-48285-7_33
10.1007/3-540-44495-5_3
10.1007/3-540-44598-6_32
10.1007/3-540-39118-5_23
10.1007/3-540-44987-6_25
10.1007/3-540-45539-6_40
10.1109/TIT.1969.1054260
10.1007/978-3-642-34961-4_12
10.1109/TIT.1984.1056949
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2019.2933533
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 8356
ExternalDocumentID 10_1109_TIT_2019_2933533
8789403
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c244t-c1baf4dcd913cc3f24d8b9daf1b78c6c52b0d569e538684b6551275eecd650e43
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000512370800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Nov 09 06:23:58 EST 2025
Sat Nov 29 03:31:42 EST 2025
Wed Aug 27 02:40:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-c1baf4dcd913cc3f24d8b9daf1b78c6c52b0d569e538684b6551275eecd650e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0660-8431
0000-0002-7663-7169
PQID 2316568715
PQPubID 36024
PageCount 12
ParticipantIDs proquest_journals_2316568715
crossref_primary_10_1109_TIT_2019_2933533
ieee_primary_8789403
PublicationCentury 2000
PublicationDate 2019-12-01
PublicationDateYYYYMMDD 2019-12-01
PublicationDate_xml – month: 12
  year: 2019
  text: 2019-12-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2019
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref13
ref34
ref12
ref37
ref15
ref36
ref30
ref33
ref11
ref10
courtois (ref32) 2003
ref2
gammel (ref24) 2005
ref1
ref17
ref16
ref19
ref18
simpson (ref31) 2000
limniotis (ref26) 2007
ref23
ref25
ref20
ref22
ref21
ref28
ref29
ref8
ref7
ref4
berlekamp (ref9) 1968
ref3
gammel (ref27) 2006
ref6
macwilliams (ref14) 1977
ref5
References_xml – ident: ref34
  doi: 10.1007/978-3-540-89255-7_26
– ident: ref19
  doi: 10.1109/18.6037
– ident: ref37
  doi: 10.1007/3-540-46885-4_53
– ident: ref4
  doi: 10.1007/3-540-68339-9_20
– start-page: 345
  year: 2003
  ident: ref32
  article-title: Algebraic attacks on stream ciphers with linear feedback
  publication-title: Adv Cryptology
– year: 1977
  ident: ref14
  publication-title: Error Correcting Codes
– ident: ref11
  doi: 10.1109/18.243455
– ident: ref36
  doi: 10.1109/TIT.2007.915704
– ident: ref18
  doi: 10.1007/3-540-45539-6_35
– ident: ref21
  doi: 10.1109/TIT.1983.1056619
– year: 2007
  ident: ref26
  article-title: Signal processing techniques in cryptography
– ident: ref8
  doi: 10.1007/s001450010007
– ident: ref16
  doi: 10.1007/3-540-39805-8_12
– ident: ref5
  doi: 10.1109/TIT.2004.824913
– start-page: 248
  year: 2000
  ident: ref31
  article-title: LILI keystream generator
  publication-title: Selected Areas in Cryptography
– ident: ref22
  doi: 10.1109/18.825845
– ident: ref29
  doi: 10.1007/978-3-540-74619-5_5
– ident: ref6
  doi: 10.1109/TIT.2009.2030452
– ident: ref28
  doi: 10.1049/iet-ifs:20060153
– ident: ref2
  doi: 10.1007/3-540-54973-0
– ident: ref1
  doi: 10.1017/CBO9780511780448.011
– ident: ref7
  doi: 10.1109/ITW.2002.1115421
– ident: ref13
  doi: 10.1109/TIT.2009.2027495
– ident: ref12
  doi: 10.1109/TIT.2002.806136
– ident: ref25
  doi: 10.1007/11799313_1
– ident: ref3
  doi: 10.1007/3-540-48285-7_33
– ident: ref30
  doi: 10.1007/3-540-44495-5_3
– ident: ref33
  doi: 10.1007/3-540-44598-6_32
– year: 1968
  ident: ref9
  publication-title: Algebraic Coding Theory
– year: 2006
  ident: ref27
  article-title: Achterbahn-128/80
– ident: ref15
  doi: 10.1007/3-540-39118-5_23
– ident: ref23
  doi: 10.1007/3-540-44987-6_25
– ident: ref20
  doi: 10.1007/3-540-45539-6_40
– ident: ref10
  doi: 10.1109/TIT.1969.1054260
– ident: ref35
  doi: 10.1007/978-3-642-34961-4_12
– ident: ref17
  doi: 10.1109/TIT.1984.1056949
– year: 2005
  ident: ref24
  article-title: The Achterbahn stream cipher
SSID ssj0014512
Score 2.3283775
Snippet The error linear complexity spectrum constitutes a well-known cryptographic criterion for sequences, indicating how the linear complexity of the sequence...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 8345
SubjectTerms Algorithms
Approximation algorithms
Approximations
Boolean algebra
Boolean functions
Ciphers
Codes
Communication channels
Complexity
Complexity theory
Correlation
Criteria
Cryptography
error linear complexity spectrum
Input variables
Lauder-Paterson algorithm
Upper bounds
Title The Error Linear Complexity Spectrum as a Cryptographic Criterion of Boolean Functions
URI https://ieeexplore.ieee.org/document/8789403
https://www.proquest.com/docview/2316568715
Volume 65
WOSCitedRecordID wos000512370800042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED2VigEGCi2IQkEeWJBIm8R2Yo-AWsFSMRTULUpsR6oESZWmSP33nJO0AsHCliG2ovvw3eXO7wHcJDpMLHCWowzFAkVy5sRCUyc2mCNpN01doyqyiXA6FfO5fGnB3e4ujDGmGj4zQ_tY9fJ1rtb2V9lIhEIyC-25F4ZBfVdr1zFg3KuRwT10YKw5ti1JV45mzzM7wyWHGNoop_RHCKo4VX4dxFV0mXT-913HcNRkkeS-VvsJtEzWhc6WoYE0DtuFw29wgz14Q5sg46LIC4IlKJo4sSssIma5IZaIvizWHyRekZg8FptlWaNZLxSxfAi4R56RPCUPef5u4oxMMCJWRnsKr5Px7PHJaXgVHIXBvHSUl8Qp00pLjypFU59pkUgdp14SChUo7ieu5oE0eBgGgiUBZlV-yI1RGvM5w-gZtLM8M-dAOBaYrtYsiF3F_NQTwvgo4kBz4fGUyj7cbkUdLWv4jKgqO1wZoVoiq5aoUUsfela0u_caqfZhsNVN1PjXKsKsFBNRLPb4xd-rLuHA7l0PngygjQI0V7CvPsvFqriuTOcL_V7CMA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB6KCurBt1ife_AimDbJ7ia7Ry0tFbV4qNJbSHY3UNBE0ij03zubpEXRi7ccskmYx858mdlvAC4THSaWOMtRhiJAkZw5sdDUiQ3mSNpNU9eoathEOBqJyUQ-teB6eRbGGFM1n5mOvaxq-TpXH_ZXWVeEQjJL7bnKGfPd-rTWsmbAuFdzg3vowog6FkVJV3bHd2PbxSU7GNwop_RHEKqmqvzaiqv4Mtj-35ftwFaTR5KbWvG70DLZHmwvZjSQxmX3YPMb4eA-vKBVkH5R5AVBEIpGTuwKy4lZzokdRV8WH28knpGY9Ir5e1nzWU8VsRMR8Bl5RvKU3Ob5q4kzMsCYWJntATwP-uPe0GkmKzgKw3npKC-JU6aVlh5ViqY-0yKROk69JBQqUNxPXM0DaXA7DARLAsyr_JAbozRmdIbRQ1jJ8swcAeEIMV2tWRC7ivmpJ4TxUcSB5sLjKZVtuFqIOnqvCTSiCni4MkK1RFYtUaOWNuxb0S7va6TahtOFbqLGw2YR5qWYiiLc48d_r7qA9eH48SF6uBvdn8CGfU_dhnIKKyhMcwZr6rOczorzyoy-AELwxXc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Error+Linear+Complexity+Spectrum+as+a+Cryptographic+Criterion+of+Boolean+Functions&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Limniotis%2C+Konstantinos&rft.au=Kolokotronis%2C+Nicholas&rft.date=2019-12-01&rft.pub=IEEE&rft.issn=0018-9448&rft.volume=65&rft.issue=12&rft.spage=8345&rft.epage=8356&rft_id=info:doi/10.1109%2FTIT.2019.2933533&rft.externalDocID=8789403
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon