Characteristic Sets of Fixed-Dimension Vector Linear Codes for Non-Multicast Networks

Vector linear solvability of non-multicast networks depends upon both the characteristic of the finite field and the dimension of the vector linear network code. In the literature, the dependency on the characteristic of the finite field and the dependency on the dimension have been studied separate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory Jg. 66; H. 12; S. 7408 - 7426
Hauptverfasser: Das, Niladri, Rai, Brijesh Kumar
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.12.2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9448, 1557-9654
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Vector linear solvability of non-multicast networks depends upon both the characteristic of the finite field and the dimension of the vector linear network code. In the literature, the dependency on the characteristic of the finite field and the dependency on the dimension have been studied separately. In this paper, we show the interdependency between the characteristic of the finite field and the dimension of the vector linear network code that achieves a vector linear network coding (VLNC) solution in non-multicast networks. For any given network <inline-formula> <tex-math notation="LaTeX">\mathcal {N} </tex-math></inline-formula>, we define <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},d) </tex-math></inline-formula> as the set of all characteristics of finite fields over which the network <inline-formula> <tex-math notation="LaTeX">\mathcal {N} </tex-math></inline-formula> has a <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>-dimensional VLNC solution. To the best of our knowledge, for any network <inline-formula> <tex-math notation="LaTeX">\mathcal {N} </tex-math></inline-formula> shown in the literature, if <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},1) </tex-math></inline-formula> is non-empty, then <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},1) = P(\mathcal {N},d) </tex-math></inline-formula> for any positive integer <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>. We show that, for any two non-empty sets of primes <inline-formula> <tex-math notation="LaTeX">P_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">P_{2} </tex-math></inline-formula>, there exists a network <inline-formula> <tex-math notation="LaTeX">\mathcal {N} </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},1) = P_{1} </tex-math></inline-formula>, but <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},2) = \{P_{1},P_{2} \} </tex-math></inline-formula>. We also show that there are networks exhibiting a similar advantage (the existence of a VLNC solution over a larger set of characteristics) if the dimension is increased from 2 to 3. However, such behaviour is not universal, as there exist networks which admit a VLNC solution over a smaller set of characteristics of finite fields when the dimension is increased. Using the networks constructed in this paper, we further demonstrate that: (i) a network having an <inline-formula> <tex-math notation="LaTeX">m_{1} </tex-math></inline-formula>-dimensional VLNC solution over a finite field of some characteristic and an <inline-formula> <tex-math notation="LaTeX">m_{2} </tex-math></inline-formula>-dimensional VLNC solution over a finite field of some other characteristic may not have an <inline-formula> <tex-math notation="LaTeX">(m_{1} + m_{2}) </tex-math></inline-formula>-dimensional VLNC solution over any finite field; (ii) there exist a class of networks for which scalar linear network coding (SLNC) over non-commutative rings has some advantage over SLNC over finite fields: the least sized non-commutative ring over which each network in the class has an SLNC solution is significantly lesser in size than the least sized finite field over which it has an SLNC solution.
AbstractList Vector linear solvability of non-multicast networks depends upon both the characteristic of the finite field and the dimension of the vector linear network code. In the literature, the dependency on the characteristic of the finite field and the dependency on the dimension have been studied separately. In this paper, we show the interdependency between the characteristic of the finite field and the dimension of the vector linear network code that achieves a vector linear network coding (VLNC) solution in non-multicast networks. For any given network [Formula Omitted], we define [Formula Omitted] as the set of all characteristics of finite fields over which the network [Formula Omitted] has a [Formula Omitted]-dimensional VLNC solution. To the best of our knowledge, for any network [Formula Omitted] shown in the literature, if [Formula Omitted] is non-empty, then [Formula Omitted] for any positive integer [Formula Omitted]. We show that, for any two non-empty sets of primes [Formula Omitted] and [Formula Omitted], there exists a network [Formula Omitted] such that [Formula Omitted], but [Formula Omitted]. We also show that there are networks exhibiting a similar advantage (the existence of a VLNC solution over a larger set of characteristics) if the dimension is increased from 2 to 3. However, such behaviour is not universal, as there exist networks which admit a VLNC solution over a smaller set of characteristics of finite fields when the dimension is increased. Using the networks constructed in this paper, we further demonstrate that: (i) a network having an [Formula Omitted]-dimensional VLNC solution over a finite field of some characteristic and an [Formula Omitted]-dimensional VLNC solution over a finite field of some other characteristic may not have an [Formula Omitted]-dimensional VLNC solution over any finite field; (ii) there exist a class of networks for which scalar linear network coding (SLNC) over non-commutative rings has some advantage over SLNC over finite fields: the least sized non-commutative ring over which each network in the class has an SLNC solution is significantly lesser in size than the least sized finite field over which it has an SLNC solution.
Vector linear solvability of non-multicast networks depends upon both the characteristic of the finite field and the dimension of the vector linear network code. In the literature, the dependency on the characteristic of the finite field and the dependency on the dimension have been studied separately. In this paper, we show the interdependency between the characteristic of the finite field and the dimension of the vector linear network code that achieves a vector linear network coding (VLNC) solution in non-multicast networks. For any given network <inline-formula> <tex-math notation="LaTeX">\mathcal {N} </tex-math></inline-formula>, we define <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},d) </tex-math></inline-formula> as the set of all characteristics of finite fields over which the network <inline-formula> <tex-math notation="LaTeX">\mathcal {N} </tex-math></inline-formula> has a <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>-dimensional VLNC solution. To the best of our knowledge, for any network <inline-formula> <tex-math notation="LaTeX">\mathcal {N} </tex-math></inline-formula> shown in the literature, if <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},1) </tex-math></inline-formula> is non-empty, then <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},1) = P(\mathcal {N},d) </tex-math></inline-formula> for any positive integer <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>. We show that, for any two non-empty sets of primes <inline-formula> <tex-math notation="LaTeX">P_{1} </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">P_{2} </tex-math></inline-formula>, there exists a network <inline-formula> <tex-math notation="LaTeX">\mathcal {N} </tex-math></inline-formula> such that <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},1) = P_{1} </tex-math></inline-formula>, but <inline-formula> <tex-math notation="LaTeX">P(\mathcal {N},2) = \{P_{1},P_{2} \} </tex-math></inline-formula>. We also show that there are networks exhibiting a similar advantage (the existence of a VLNC solution over a larger set of characteristics) if the dimension is increased from 2 to 3. However, such behaviour is not universal, as there exist networks which admit a VLNC solution over a smaller set of characteristics of finite fields when the dimension is increased. Using the networks constructed in this paper, we further demonstrate that: (i) a network having an <inline-formula> <tex-math notation="LaTeX">m_{1} </tex-math></inline-formula>-dimensional VLNC solution over a finite field of some characteristic and an <inline-formula> <tex-math notation="LaTeX">m_{2} </tex-math></inline-formula>-dimensional VLNC solution over a finite field of some other characteristic may not have an <inline-formula> <tex-math notation="LaTeX">(m_{1} + m_{2}) </tex-math></inline-formula>-dimensional VLNC solution over any finite field; (ii) there exist a class of networks for which scalar linear network coding (SLNC) over non-commutative rings has some advantage over SLNC over finite fields: the least sized non-commutative ring over which each network in the class has an SLNC solution is significantly lesser in size than the least sized finite field over which it has an SLNC solution.
Author Das, Niladri
Rai, Brijesh Kumar
Author_xml – sequence: 1
  givenname: Niladri
  orcidid: 0000-0002-9494-2845
  surname: Das
  fullname: Das, Niladri
  email: niladribegins@gmail.com
  organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
– sequence: 2
  givenname: Brijesh Kumar
  orcidid: 0000-0001-9719-956X
  surname: Rai
  fullname: Rai, Brijesh Kumar
  email: brijesh.rai@gmail.com
  organization: Department of Electronics and Electrical Engineering, Indian Institute of Technology Guwahati, Guwahati, India
BookMark eNo9kDFPwzAQhS1UJNrCjsQSiTnl7NhJPKJAoVIpAy1r5DhnkdLGxXYF_HtctWJ6utN7d3rfiAx62yMh1xQmlIK8W86WEwYMJhlQDoKfkSEVokhlLviADAFomUrOywsy8n4dRy4oG5JV9aGc0gFd50OnkzcMPrEmmXY_2KYP3RZ739k-eUcdrEvmXY_KJZVt0ScmLha2T1_2mxhVPiQLDN_WffpLcm7UxuPVScdkNX1cVs_p_PVpVt3PU804D6lCzQCaAkShTKmzRjcFl7nRtDGiaGgUKrEwJTXIsla1IIuGg8pBIlMUszG5Pd7dOfu1Rx_qtd27Pr6sGY_Fs5zKLLrg6NLOeu_Q1DvXbZX7rSnUB3h1hFcf4NUneDFyc4x0iPhvl1SUWc6yP42ObQA
CODEN IETTAW
Cites_doi 10.1109/TIT.2018.2866244
10.1109/TIT.2008.920209
10.1109/TIT.2005.847712
10.1109/LCOMM.2019.2922655
10.1109/TIT.2002.807285
10.1109/TIT.2010.2094930
10.1109/TCOMM.2016.2613085
10.1109/TIT.2016.2618379
10.1109/TIT.2007.896862
10.1109/18.850663
10.23919/ISITA.2018.8664366
10.1109/TIT.2017.2697421
10.1109/TIT.2015.2473863
10.1109/TIT.2005.851744
10.1109/TIT.2011.2169532
10.1109/TIT.2016.2613988
10.1109/TIT.2010.2090227
10.1109/TIT.2017.2697422
10.1109/TIT.2006.881746
10.1109/LCOMM.2016.2583418
10.1109/TIT.2018.2797183
10.1109/TIT.2016.2555955
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TIT.2020.3014054
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1557-9654
EndPage 7426
ExternalDocumentID 10_1109_TIT_2020_3014054
9158362
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACGOD
ACIWK
AENEX
AETEA
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c244t-aec200b7057af8c3bcb7496fc1bf57b11bf19e7f81fe23dad097b40a609e2a1e3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000594905600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9448
IngestDate Sun Jun 29 12:17:23 EDT 2025
Sat Nov 29 03:31:44 EST 2025
Wed Aug 27 02:27:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-aec200b7057af8c3bcb7496fc1bf57b11bf19e7f81fe23dad097b40a609e2a1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9719-956X
0000-0002-9494-2845
PQID 2465436193
PQPubID 36024
PageCount 19
ParticipantIDs proquest_journals_2465436193
crossref_primary_10_1109_TIT_2020_3014054
ieee_primary_9158362
PublicationCentury 2000
PublicationDate 2020-12-01
PublicationDateYYYYMMDD 2020-12-01
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on information theory
PublicationTitleAbbrev TIT
PublicationYear 2020
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref24
ref23
ref15
ref14
ref20
ref11
ref22
ref10
ref21
ref2
ref1
ref17
ref16
ref19
ref18
ref8
ref7
ref4
ref3
jaggi (ref9) 2003
ref6
ref5
médard (ref12) 2003
References_xml – ident: ref23
  doi: 10.1109/TIT.2018.2866244
– ident: ref18
  doi: 10.1109/TIT.2008.920209
– start-page: 21
  year: 2003
  ident: ref12
  article-title: On coding for non-multicast networks
  publication-title: Proc 41st Annu Allerton Conf Commun Control Comput
– ident: ref4
  doi: 10.1109/TIT.2005.847712
– ident: ref15
  doi: 10.1109/LCOMM.2019.2922655
– ident: ref3
  doi: 10.1109/TIT.2002.807285
– ident: ref8
  doi: 10.1109/TIT.2010.2094930
– ident: ref10
  doi: 10.1109/TCOMM.2016.2613085
– ident: ref17
  doi: 10.1109/TIT.2016.2618379
– ident: ref13
  doi: 10.1109/TIT.2007.896862
– ident: ref2
  doi: 10.1109/18.850663
– ident: ref1
  doi: 10.23919/ISITA.2018.8664366
– ident: ref21
  doi: 10.1109/TIT.2017.2697421
– ident: ref6
  doi: 10.1109/TIT.2015.2473863
– ident: ref16
  doi: 10.1109/TIT.2005.851744
– ident: ref19
  doi: 10.1109/TIT.2011.2169532
– ident: ref7
  doi: 10.1109/TIT.2016.2613988
– ident: ref20
  doi: 10.1109/TIT.2010.2090227
– ident: ref22
  doi: 10.1109/TIT.2017.2697422
– ident: ref5
  doi: 10.1109/TIT.2006.881746
– start-page: 1
  year: 2003
  ident: ref9
  article-title: On linear network coding
  publication-title: Proc 42nd Annu Allerton Conf Commun Control Comput
– ident: ref14
  doi: 10.1109/LCOMM.2016.2583418
– ident: ref11
  doi: 10.1109/TIT.2018.2797183
– ident: ref24
  doi: 10.1109/TIT.2016.2555955
SSID ssj0014512
Score 2.3422465
Snippet Vector linear solvability of non-multicast networks depends upon both the characteristic of the finite field and the dimension of the vector linear network...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 7408
SubjectTerms characteristic set
Coding
Commutativity
Dependence
Fields (mathematics)
Knowledge engineering
Linear codes
M-network
message dimension
Modules (abstract algebra)
Multicasting
Network coding
Networks
non-multicast networks
Numbers
Rings (mathematics)
Routing
Sun
Vector linear network coding
vector linear solvability
Title Characteristic Sets of Fixed-Dimension Vector Linear Codes for Non-Multicast Networks
URI https://ieeexplore.ieee.org/document/9158362
https://www.proquest.com/docview/2465436193
Volume 66
WOSCitedRecordID wos000594905600008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9654
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014512
  issn: 0018-9448
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1q8aAHq61itcoevAhGs8k2mz1KtShIEaziLexuJuClERPFn-_sJi2KXjwlhySEnZ2defPxBuCEY4rCGIIlIpaBSEIVkFdtAmNRYZhaTHLPM3snZ7P0-Vndd-Bs1QuDiL74DM_drc_l56V9d6GyC8XHqT9w16RMml6tVcZAjHnDDM5JgQlzLFOSobqY384JCEaETx2cGIsfJsjPVPl1EHvrMu3977-2Yav1ItllI_Yd6OCiD73lhAbWKmwfNr_RDQ7gcfKDnZk9YF2xsmDTl0_MgyvH8-9iZ-zJR_IZwVRSAzYpc6wY-bZsVi4C37BrdVWzWVNAXu3C4_R6PrkJ2rEKgSVbXgcaLamGkeSp6SK1sbFGCpUUlptiLA2nC1coi5QXGMW5zkMljQg1yREjzTHeg-6iXOA-MBPGRYQ8KeJUC6MEmTqjNHltWhujtR3C6XKls9eGPSPzqCNUGUklc1LJWqkMYeBWdvVcu6hDGC1Fk7XqVWWRY4GLCfvFB3-_dQgb7ttN3ckIuvXbOx7Buv2oX6q3Y79zvgBzksJw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB5EBfXgW6xW3YMXwWg22TbZo1SLYg2CrXgLu5sJ9NJIk4o_39lNWhS9eEoOCQk7OzvzzeMbgHOOMQqtCZaIMPJE15ceedXa0wYl-rHBbuZ4ZgdRksRvb_J5CS4XvTCI6IrP8Mreulx-VpiZDZVdS96J3YG7YidnNd1ai5yB6PCaG5yTChPqmCclfXk9fBgSFAwIoVpA0RE_jJCbqvLrKHb2pb_1vz_bhs3Gj2Q3teB3YAknu7A1n9HAGpXdhY1vhIN7MOr94GdmL1iVrMhZf_yJmXdrmf5t9Iy9ulg-I6BKisB6RYYlI--WJcXEcy27RpUVS-oS8nIfRv27Ye_eawYreIaseeUpNKQcOiJfTeWxCbXRkZDd3HCddyLN6cIlRnnMcwzCTGW-jLTwFUkSA8UxPIDlSTHBQ2DaD_MAeTcPYyW0FGTstFTktymltVKmBRfzlU7fa_6M1OEOX6YkldRKJW2k0oI9u7KL55pFbUF7Lpq0UbAyDSwPXEjoLzz6-60zWLsfPg3SwUPyeAzr9jt1FUoblqvpDE9g1XxU43J66nbRF7-7xbk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characteristic+Sets+of+Fixed-Dimension+Vector+Linear+Codes+for+Non-Multicast+Networks&rft.jtitle=IEEE+transactions+on+information+theory&rft.au=Das%2C+Niladri&rft.au=Rai%2C+Brijesh+Kumar&rft.date=2020-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9448&rft.eissn=1557-9654&rft.volume=66&rft.issue=12&rft.spage=7408&rft_id=info:doi/10.1109%2FTIT.2020.3014054&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9448&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9448&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9448&client=summon