A Deterministic Algorithm for the Capacity of Finite-State Channels

We propose two modified versions of the classical gradient ascent method to compute the capacity of finite-state channels with Markovian inputs. For the case that the channel mutual information rate is strongly concave in a parameter taking values in a compact convex subset of some Euclidean space,...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 68; číslo 3; s. 1465 - 1479
Hlavní autoři: Wu, Chengyu, Han, Guangyue, Anantharam, Venkat, Marcus, Brian
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.03.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose two modified versions of the classical gradient ascent method to compute the capacity of finite-state channels with Markovian inputs. For the case that the channel mutual information rate is strongly concave in a parameter taking values in a compact convex subset of some Euclidean space, our first algorithm proves to achieve polynomial accuracy in polynomial time and, moreover, for some special families of finite-state channels our algorithm can achieve exponential accuracy in polynomial time under some technical conditions. For the case that the channel mutual information rate may not be strongly concave, our second algorithm proves to be at least locally convergent.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2021.3132675