Hydraulic heterogeneity estimation with transient hydraulic tomography and convolutional encoder-decoder neural network

This study proposes a hydraulic tomography neural network (HT-NN) based on a convolutional encoder-decoder neural network (DenseNet) combined with a head data sampling strategy to estimate hydrogeological parameter fields. Numerical experiments demonstrate that HT-NN effectively captures the spatial...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Stochastic environmental research and risk assessment Ročník 39; číslo 9; s. 4083 - 4105
Hlavní autoři: Chen, Yu-Kai, Tsai, Jui-Pin, Wang, Bo-Tsen, Chang, Chia-Hao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2025
Témata:
ISSN:1436-3240, 1436-3259
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This study proposes a hydraulic tomography neural network (HT-NN) based on a convolutional encoder-decoder neural network (DenseNet) combined with a head data sampling strategy to estimate hydrogeological parameter fields. Numerical experiments demonstrate that HT-NN effectively captures the spatial characteristics of both hydraulic conductivity ( ) and specific storage ( ) fields and achieves high accuracy in delineating subsurface heterogeneity. By selecting late- and early-time head data to construct the input matrix, HT-NN substantially improves parameter estimation while significantly reducing computational time. Compared to the successive linear estimator (SLE), HT-NN achieves more accurate parameter estimation and reduces computation time from 28.5 h to 0.76 s. The simulated heads derived from HT-NN’s estimated parameter fields closely match the reference heads across all experiments. Additionally, adopting a smaller input matrix with a simplified encoder-decoder structure greatly enhances computational efficiency while maintaining estimation accuracy. These findings demonstrate the potential of HT-NN as an efficient and reliable alternative for estimating hydrogeological parameters in heterogeneous aquifer systems.
ISSN:1436-3240
1436-3259
DOI:10.1007/s00477-025-03051-8