Hydraulic heterogeneity estimation with transient hydraulic tomography and convolutional encoder-decoder neural network
This study proposes a hydraulic tomography neural network (HT-NN) based on a convolutional encoder-decoder neural network (DenseNet) combined with a head data sampling strategy to estimate hydrogeological parameter fields. Numerical experiments demonstrate that HT-NN effectively captures the spatial...
Uloženo v:
| Vydáno v: | Stochastic environmental research and risk assessment Ročník 39; číslo 9; s. 4083 - 4105 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2025
|
| Témata: | |
| ISSN: | 1436-3240, 1436-3259 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This study proposes a hydraulic tomography neural network (HT-NN) based on a convolutional encoder-decoder neural network (DenseNet) combined with a head data sampling strategy to estimate hydrogeological parameter fields. Numerical experiments demonstrate that HT-NN effectively captures the spatial characteristics of both hydraulic conductivity (
) and specific storage (
) fields and achieves high accuracy in delineating subsurface heterogeneity. By selecting late- and early-time head data to construct the input matrix, HT-NN substantially improves parameter estimation while significantly reducing computational time. Compared to the successive linear estimator (SLE), HT-NN achieves more accurate parameter estimation and reduces computation time from 28.5 h to 0.76 s. The simulated heads derived from HT-NN’s estimated parameter fields closely match the reference heads across all experiments. Additionally, adopting a smaller input matrix with a simplified encoder-decoder structure greatly enhances computational efficiency while maintaining estimation accuracy. These findings demonstrate the potential of HT-NN as an efficient and reliable alternative for estimating hydrogeological parameters in heterogeneous aquifer systems. |
|---|---|
| ISSN: | 1436-3240 1436-3259 |
| DOI: | 10.1007/s00477-025-03051-8 |