Multikernel Passive Stochastic Gradient Algorithms and Transfer Learning

This article develops a novel passive stochastic gradient algorithm. In passive stochastic approximation, the stochastic gradient algorithm does not have control over the location where noisy gradients of the cost function are evaluated. Classical passive stochastic gradient algorithms use a kernel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 67; H. 4; S. 1792 - 1805
Hauptverfasser: Krishnamurthy, Vikram, Yin, George
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This article develops a novel passive stochastic gradient algorithm. In passive stochastic approximation, the stochastic gradient algorithm does not have control over the location where noisy gradients of the cost function are evaluated. Classical passive stochastic gradient algorithms use a kernel that approximates a Dirac delta to weigh the gradients based on how far they are evaluated from the desired point. In this article, we construct a multikernel passive stochastic gradient algorithm. The algorithm performs substantially better in high dimensional problems and incorporates variance reduction. We analyze the weak convergence of the multikernel algorithm and its rate of convergence. In numerical examples, we study the multikernel version of the passive least mean squares algorithm for transfer learning to compare the performance with the classical passive version.
AbstractList This article develops a novel passive stochastic gradient algorithm. In passive stochastic approximation, the stochastic gradient algorithm does not have control over the location where noisy gradients of the cost function are evaluated. Classical passive stochastic gradient algorithms use a kernel that approximates a Dirac delta to weigh the gradients based on how far they are evaluated from the desired point. In this article, we construct a multikernel passive stochastic gradient algorithm. The algorithm performs substantially better in high dimensional problems and incorporates variance reduction. We analyze the weak convergence of the multikernel algorithm and its rate of convergence. In numerical examples, we study the multikernel version of the passive least mean squares algorithm for transfer learning to compare the performance with the classical passive version.
Author Yin, George
Krishnamurthy, Vikram
Author_xml – sequence: 1
  givenname: Vikram
  orcidid: 0000-0002-4170-6056
  surname: Krishnamurthy
  fullname: Krishnamurthy, Vikram
  email: vikramk@cornell.edu
  organization: School of Electrical and Computer Engineering, Cornell University, Ithaca, NY, USA
– sequence: 2
  givenname: George
  orcidid: 0000-0002-2951-0704
  surname: Yin
  fullname: Yin, George
  email: gyin@uconn.edu
  organization: Department of Mathematics, University of Connecticut, Storrs, CT, USA
BookMark eNo9kE1LAzEQhoNUsK3eBS8Lnrfmczc5lqKtUFGwnkM2O2lTt9mabIX-e7e0eBre4Xln4BmhQWgDIHRP8IQQrJ5W09mEYkomDJeKSnyFhkQImVNB2QANMSYy7_fFDRqltO1jwTkZosXboen8N8QATfZhUvK_kH12rd2Y1HmbzaOpPYQumzbrNvpus0uZCXW2iiYkBzFbgonBh_UtunamSXB3mWP09fK8mi3y5fv8dTZd5pZy3uUlxoUqHcESCpCsMiCo4wqUtbaSogarnCwrkK5mNRUFtayqiCwFVbKqwLExejzf3cf25wCp09v2EEP_UtOCCyqEkqKn8JmysU0pgtP76HcmHjXB-uRL9770yZe--OorD-eKB4B_XPHeGSbsD7HXaLw
CODEN IETAA9
Cites_doi 10.1002/0471221104
10.1109/TAP.1986.1143812
10.1080/02331887708801361
10.1109/ISIT.2018.8437871
10.1109/9.481610
10.1109/TIT.1987.1057305
10.1002/SERIES1345
10.1214/aos/1176343595
10.1007/0-387-28982-8
10.1214/12-EJS675
10.1002/9780470316658
10.1109/TKDE.2009.191
10.1109/PROC.1972.8817
10.1109/TSP.2013.2254481
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2021.3079280
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 1805
ExternalDocumentID 10_1109_TAC_2021_3079280
9428601
Genre orig-research
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-1714180
  funderid: 10.13039/501100008982
– fundername: Army Research Office
  grantid: W911NF-19-1-0365; W911NF-21-1-0093
  funderid: 10.13039/100000183
– fundername: Air Force Office of Scientific Research
  grantid: FA9550-18-1-0268
  funderid: 10.13039/100000181
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c244t-700697f108e6e83bae52f49e9cccb85dec9f87be8fd3d2562c3bb1875298bbef3
IEDL.DBID RIE
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000776167500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Mon Jun 30 10:11:26 EDT 2025
Sat Nov 29 05:41:02 EST 2025
Wed Aug 27 02:36:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-700697f108e6e83bae52f49e9cccb85dec9f87be8fd3d2562c3bb1875298bbef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4170-6056
0000-0002-2951-0704
PQID 2645255985
PQPubID 85475
PageCount 14
ParticipantIDs ieee_primary_9428601
crossref_primary_10_1109_TAC_2021_3079280
proquest_journals_2645255985
PublicationCentury 2000
PublicationDate 2022-04-01
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
Kushner (ref12) 1984
ref20
Ethier (ref6) 1986
ref10
ref2
ref1
Nazin (ref3) 1989; 50
ref17
ref16
ref19
ref18
ref7
ref4
A (ref9) 2000; 3
Benveniste (ref11) 1990; 22
Krishnamurthy (ref8) 2020; 22
Kushner (ref5) 2003
References_xml – volume-title: Approximation and Weak Convergence Methods for Random Processes, With Applications to Stochastic Systems Theory
  year: 1984
  ident: ref12
– ident: ref16
  doi: 10.1002/0471221104
– ident: ref18
  doi: 10.1109/TAP.1986.1143812
– ident: ref1
  doi: 10.1080/02331887708801361
– volume-title: Stochastic Approximation Algorithms and Recursive Algorithms and Applications
  year: 2003
  ident: ref5
– volume: 3
  volume-title: Van Der Vaart, Asymptotic Statistics
  year: 2000
  ident: ref9
– ident: ref20
  doi: 10.1109/ISIT.2018.8437871
– volume: 22
  year: 2020
  ident: ref8
  article-title: Langevin dynamics for adaptive inverse reinforcement learning of stochastic gradient algorithms
  publication-title: J. Mach. Learn. Res.
– ident: ref4
  doi: 10.1109/9.481610
– ident: ref2
  doi: 10.1109/TIT.1987.1057305
– ident: ref7
  doi: 10.1002/SERIES1345
– volume: 22
  volume-title: Adaptive Algorithms and Stochastic Approximations (Ser. Applications of Mathematics)
  year: 1990
  ident: ref11
– ident: ref13
  doi: 10.1214/aos/1176343595
– ident: ref10
  doi: 10.1007/0-387-28982-8
– ident: ref14
  doi: 10.1214/12-EJS675
– volume: 50
  start-page: 1563
  issue: 11
  year: 1989
  ident: ref3
  article-title: Passive stochastic approximation
  publication-title: Autom. Remote Control
– volume-title: Markov Processes-Characterization and Convergence
  year: 1986
  ident: ref6
  doi: 10.1002/9780470316658
– ident: ref15
  doi: 10.1109/TKDE.2009.191
– ident: ref17
  doi: 10.1109/PROC.1972.8817
– ident: ref19
  doi: 10.1109/TSP.2013.2254481
SSID ssj0016441
Score 2.4100125
Snippet This article develops a novel passive stochastic gradient algorithm. In passive stochastic approximation, the stochastic gradient algorithm does not have...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1792
SubjectTerms Algorithms
Approximation algorithms
Bernstein von-Mises theorem
Convergence
Cost function
Kernel
Least mean squares
Least mean squares algorithm
Machine learning
Monte Carlo methods
Noise measurement
Ordinary differential equations
passive least mean squares (LMS)
stochastic gradient algorithm
stochastic sampling
Transfer learning
Variance analysis
variance reduction
weak convergence
Title Multikernel Passive Stochastic Gradient Algorithms and Transfer Learning
URI https://ieeexplore.ieee.org/document/9428601
https://www.proquest.com/docview/2645255985
Volume 67
WOSCitedRecordID wos000776167500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT8JAEN0g8aAHv9CIotmDFxML_Vp290iMyImQiAm3prudAhFbU4q_39ltIRq9eGvSbdK87sy86cybJeSOcR-JLhMO-v_EMUoqB1kCdyAEHqgQEuZpe9gEH4_FbCYnDfKw08IAgG0-g665tLX8JNcb86usJ5Er941Ya49zXmm1dhUDE9crr4sGjMu2JUlX9qaDR0wEfa-L-xlvuT9CkD1T5ZcjttFlePy_9zohRzWLpIPqs5-SBmRn5PDbbMEWGVlp7RsUGazoBCkyujX6UuZ6EZvRzPS5sM1eJR2s5nmxLBfvaxpnCbXBK4WC1pNX5-fkdfg0fRw59bEJjkaoS4eb6cM89VwBfRCBioH5aShBaq2VYAlomQquQKRJkCDj8XWglId5iy-FUpAGF6SZ5RlcEmqa2IKEpdITcRgqTM9ihgaOOaGHtq78NrnfIhl9VNMxIptVuDJC1CODelSj3iYtg9xuXQ1am3S20Ee1-awj35ZbmRTs6u-nrsmBb3QItoWmQ5plsYEbsq8_y-W6uLU74wuzrLU5
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1EBfXgVxXr5x68CEabTdbsHouoFbUIVugtZDeTtlhTSVN_v7PbtCh68RbIBsLLzsybzLxZgFMRcSK6Qnrk_1PPKqk8YgmRhyFGgQ4xFb5xh01E7bbsdtXzApzPtTCI6JrP8MJeulp-OjIT-6vsUhFXvrJirSURhtyfqrXmNQMb2ad-l0yYFs6Kkg112WleUyrI_Qva0XSr8SMIuVNVfrliF19uN_73ZpuwXvFI1px--C1YwHwb1r5NF6xBy4lr37DIccieiSSTY2Mv5cj0Ezucmd0Vrt2rZM1hb1QMyv77mCV5ylz4yrBg1ezV3g683t50rltedXCCZwjs0ovs_OEo8xsSr1AGOkHBs1ChMsZoKVI0KpORRpmlQUqch5tAa58yF66k1pgFu7CYj3LcA2bb2IJUZMqXSRhqStASQSZOWaFP1q55Hc5mSMYf0_kYscsrGiom1GOLelyhXoeaRW6-rgKtDocz6OPKgMYxdwVXoaTY__upE1hpdZ4e48f79sMBrHKrSnANNYewWBYTPIJl81kOxsWx2yVfTta4gA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multikernel+Passive+Stochastic+Gradient+Algorithms+and+Transfer+Learning&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Krishnamurthy%2C+Vikram&rft.au=Yin%2C+George&rft.date=2022-04-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=67&rft.issue=4&rft.spage=1792&rft_id=info:doi/10.1109%2FTAC.2021.3079280&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon