Improving the solution of indefinite quadratic programs and linear programs with complementarity constraints by a progressive MIP method
Indefinite quadratic programs (QPs) are known to be very difficult to be solved to global optimality, so are linear programs with linear complementarity constraints (LPCCs). It is a classic result that for a QP with an optimal solution, the QP has an equivalent formulation as a certain LPCC in terms...
Saved in:
| Published in: | Mathematical programming computation |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
16.09.2025
|
| ISSN: | 1867-2949, 1867-2957 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Indefinite quadratic programs (QPs) are known to be very difficult to be solved to global optimality, so are linear programs with linear complementarity constraints (LPCCs). It is a classic result that for a QP with an optimal solution, the QP has an equivalent formulation as a certain LPCC in terms of their globally optimal solutions. Thus it is natural to attempt to solve an (indefinite) QP as a LPCC. This paper presents a progressive mixed integer linear programming method for solving a general LPCC. Instead of solving the LPCC with a full set of integer variables expressing the complementarity conditions, the presented method solves a finite number of mixed integer subprograms by starting with a small fraction of integer variables and progressively increasing this fraction. After describing the PIP (for progressive integer programming) method and providing some details for its implementation and tuning possibilities, we demonstrate, via an extensive set of computational experiments, the superior performance of the progressive approach over the direct solution of the full-integer formulation of the LPCCs in obtaining high-quality solutions. It is also shown that the solution obtained at the termination of the PIP method is a local minimizer of the LPCC, a property that cannot be claimed by any known non-enumerative method for solving this nonconvex program. In all the experiments, the PIP method is initiated at a feasible solution of the LPCC obtained from a nonlinear programming solver, and with high likelihood, can successfully improve it. Thus, the PIP method can improve a stationary solution of an indefinite QP, something that is not likely to be achievable by a nonlinear programming method. Finally, some analysis is presented that provides a better understanding of the roles of the LPCC suboptimal solutions in the local optimality of the indefinite QP. This local aspect of the connection between a QP and its LPCC formulation has seemingly not been addressed in the literature. |
|---|---|
| AbstractList | Indefinite quadratic programs (QPs) are known to be very difficult to be solved to global optimality, so are linear programs with linear complementarity constraints (LPCCs). It is a classic result that for a QP with an optimal solution, the QP has an equivalent formulation as a certain LPCC in terms of their globally optimal solutions. Thus it is natural to attempt to solve an (indefinite) QP as a LPCC. This paper presents a progressive mixed integer linear programming method for solving a general LPCC. Instead of solving the LPCC with a full set of integer variables expressing the complementarity conditions, the presented method solves a finite number of mixed integer subprograms by starting with a small fraction of integer variables and progressively increasing this fraction. After describing the PIP (for progressive integer programming) method and providing some details for its implementation and tuning possibilities, we demonstrate, via an extensive set of computational experiments, the superior performance of the progressive approach over the direct solution of the full-integer formulation of the LPCCs in obtaining high-quality solutions. It is also shown that the solution obtained at the termination of the PIP method is a local minimizer of the LPCC, a property that cannot be claimed by any known non-enumerative method for solving this nonconvex program. In all the experiments, the PIP method is initiated at a feasible solution of the LPCC obtained from a nonlinear programming solver, and with high likelihood, can successfully improve it. Thus, the PIP method can improve a stationary solution of an indefinite QP, something that is not likely to be achievable by a nonlinear programming method. Finally, some analysis is presented that provides a better understanding of the roles of the LPCC suboptimal solutions in the local optimality of the indefinite QP. This local aspect of the connection between a QP and its LPCC formulation has seemingly not been addressed in the literature. |
| Author | Pang, Jong-Shi Zhang, Xinyao Han, Shaoning |
| Author_xml | – sequence: 1 givenname: Xinyao surname: Zhang fullname: Zhang, Xinyao – sequence: 2 givenname: Shaoning surname: Han fullname: Han, Shaoning – sequence: 3 givenname: Jong-Shi surname: Pang fullname: Pang, Jong-Shi |
| BookMark | eNpFkMtOwzAQRS1UJErpD7DyDwTGznuJKh6VimAB62hiT1qjxC62W9Q_4LMJFMFsZu7V0SzOOZtYZ4mxSwFXAqC8DkLmqUxA5gmArCGRJ2wqqqJMZJ2Xk787q8_YPIQ3GCeVZZXWU_a5HLbe7Y1d87ghHly_i8ZZ7jpurKbOWBOJv-9Qe4xG8RFeexwCR6t5byyh_-8-TNxw5YZtTwPZiN7Ew5htiB6NjYG3B45HnEIwe-KPy2c-UNw4fcFOO-wDzX_3jL3e3b4sHpLV0_1ycbNKlMyymGStzFVX6SIXqqICVFlDV2iFJNOOVNsC6rzFChSCEqpGrAqNElJBOiOJ6YzJ41_lXQieumbrzYD-0AhovnU2R53NqLP50dnI9AuyGG96 |
| Cites_doi | 10.1057/jors.1982.210 10.1007/s10957-007-9263-4 10.1007/BF01918175 10.1287/opre.16.1.150 10.1007/s12532-011-0033-9 10.1007/BF00120662 10.2172/822567 10.1023/A:1008315627883 10.1007/s101070100255 10.1007/s10107-010-0395-1 10.1137/S1052623497325107 10.1016/0020-0190(90)90100-C 10.1023/A:1008656806889 10.1137/1.9780898719000 10.1007/s12532-018-0149-2 10.1007/s10107-010-0426-y 10.1109/99.714603 10.1007/s101070100244 10.1007/s10589-025-00706-8 10.1023/A:1008369322970 10.1137/07068463x 10.1007/s10898-010-9644-3 10.1080/10556780410001654241 10.1287/ijoc.2018.0883 10.1007/3-540-06583-0_43 10.1023/A:1008293323270 10.1007/s10107-017-1208-6 10.1017/CBO9780511983658 10.1016/0966-8349(95)00008-6 10.4153/CJM-1965-053-6 10.1080/10556788.2010.512956 10.1007/BF00138693 10.1007/b97544 10.1023/A:1020209017701 10.1007/s10107-004-0559-y 10.2307/1907742 10.1080/10556780108805828 10.1007/s10957-020-01716-8 10.1007/s10898-020-00905-z 10.1016/S0167-8191(05)80147-4 10.1007/s10898-006-9001-8 10.1007/0-387-30065-1_4 10.1016/j.dam.2007.09.020 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s12532-025-00290-2 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1867-2957 |
| ExternalDocumentID | 10_1007_s12532_025_00290_2 |
| GroupedDBID | 06D 0R~ 0VY 1N0 203 29M 2JY 2KG 2~H 30V 4.4 406 408 409 40D 40E 6NX 8UJ 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH AOCGG ASPBG ATHPR AUKKA AVWKF AXYYD AYFIA AYJHY AZFZN BA0 BAPOH BGNMA CITATION CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI ESBYG FERAY FFXSO FIGPU FNLPD FRRFC FYJPI GGCAI GGRSB GJIRD GQ7 GQ8 GXS HLICF HMJXF HQYDN HRMNR I0C IJ- IKXTQ IWAJR IXC IXD IZIGR I~X J-C J0Z J9A JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O93 O9J OAM P9R PT4 QOS R89 RLLFE ROL RSV S1Z S27 S3B SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 |
| ID | FETCH-LOGICAL-c244t-4b25cf8d651c8e60c790f6dcae23fecbb0ad5ba80ca0c1c9aa86da2031ed4e2a3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001572007900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1867-2949 |
| IngestDate | Sat Nov 29 07:33:51 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c244t-4b25cf8d651c8e60c790f6dcae23fecbb0ad5ba80ca0c1c9aa86da2031ed4e2a3 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s12532-025-00290-2.pdf |
| ParticipantIDs | crossref_primary_10_1007_s12532_025_00290_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-16 |
| PublicationDateYYYYMMDD | 2025-09-16 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematical programming computation |
| PublicationYear | 2025 |
| References | 290_CR50 MS Bazaraa (290_CR5) 1982; 33 290_CR10 290_CR54 A Scozzari (290_CR44) 2008; 156 290_CR12 H Fang (290_CR20) 2020; 27 RE Burkard (290_CR9) 1997; 10 290_CR14 F Jara-Moroni (290_CR32) 2018; 169 290_CR17 290_CR18 290_CR19 JS Pang (290_CR40) 2010; 125 PM Pardalos (290_CR42) 1991; 1 SA Vavasis (290_CR49) 1990; 36 KM Anstreicher (290_CR1) 2001; 80 290_CR21 290_CR24 FJ Jara-Moroni (290_CR31) 2020; 77 290_CR25 290_CR26 J Hu (290_CR28) 2008; 19 CE Nugent (290_CR39) 1968; 16 A Wächter (290_CR51) 2006; 106 KM Anstreicher (290_CR3) 2002; 91 TS Motzkin (290_CR37) 1965; 17 ED Taillard (290_CR46) 1995; 3 ZQ Luo (290_CR36) 1996 TC Koopmans (290_CR34) 1957; 25 J Hu (290_CR29) 2012; 53 290_CR8 290_CR30 IM Bomze (290_CR7) 2002; 24 JJ Júdice (290_CR33) 2006; 36 Y Cui (290_CR15) 2020; 186 290_CR35 I Nowak (290_CR38) 1999; 14 JS Pang (290_CR41) 1999; 13 J Chen (290_CR13) 2012; 4 R Fletcher (290_CR23) 2002; 91 J Hu (290_CR27) 2012; 133 W Xia (290_CR52) 2020; 32 KM Anstreicher (290_CR2) 2001; 16 B Yu (290_CR53) 2019; 11 IM Bomze (290_CR6) 1998; 13 ED Taillard (290_CR45) 1991; 17 NV Sahinidis (290_CR43) 1996; 8 290_CR47 290_CR48 RH Byrd (290_CR11) 1999; 9 C Audel (290_CR4) 2007; 134 J Czyzyk (290_CR16) 1998; 5 R Fletcher (290_CR22) 2004; 19 |
| References_xml | – volume: 33 start-page: 991 issue: 11 year: 1982 ident: 290_CR5 publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.1982.210 – volume: 134 start-page: 353 year: 2007 ident: 290_CR4 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-007-9263-4 – ident: 290_CR10 doi: 10.1007/BF01918175 – volume: 16 start-page: 150 year: 1968 ident: 290_CR39 publication-title: Oper. Res. doi: 10.1287/opre.16.1.150 – volume: 4 start-page: 33 issue: 1 year: 2012 ident: 290_CR13 publication-title: Math. Program. Comput. doi: 10.1007/s12532-011-0033-9 – volume: 1 start-page: 15 year: 1991 ident: 290_CR42 publication-title: J. Global Optim. doi: 10.1007/BF00120662 – ident: 290_CR18 – ident: 290_CR17 doi: 10.2172/822567 – volume: 14 start-page: 357 issue: 4 year: 1999 ident: 290_CR38 publication-title: J. Global Optim. doi: 10.1023/A:1008315627883 – ident: 290_CR47 – volume: 91 start-page: 563 issue: 3 year: 2002 ident: 290_CR3 publication-title: Math. Program. doi: 10.1007/s101070100255 – volume: 125 start-page: 297 year: 2010 ident: 290_CR40 publication-title: Mathematical Programming, Series B doi: 10.1007/s10107-010-0395-1 – volume: 9 start-page: 877 issue: 4 year: 1999 ident: 290_CR11 publication-title: SIAM J. Optim. doi: 10.1137/S1052623497325107 – volume: 36 start-page: 73 year: 1990 ident: 290_CR49 publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(90)90100-C – volume: 13 start-page: 111 year: 1999 ident: 290_CR41 publication-title: Comput. Optim. Appl. doi: 10.1023/A:1008656806889 – ident: 290_CR14 doi: 10.1137/1.9780898719000 – volume: 11 start-page: 267 issue: 2 year: 2019 ident: 290_CR53 publication-title: Math. Program. Comput. doi: 10.1007/s12532-018-0149-2 – volume: 133 start-page: 243 year: 2012 ident: 290_CR27 publication-title: Mathematical Programming, Series A doi: 10.1007/s10107-010-0426-y – volume: 5 start-page: 68 issue: 3 year: 1998 ident: 290_CR16 publication-title: IEEE Journal on Computational Science and Engineering doi: 10.1109/99.714603 – ident: 290_CR25 – volume: 91 start-page: 239 issue: 2 year: 2002 ident: 290_CR23 publication-title: Math. Program. doi: 10.1007/s101070100244 – ident: 290_CR21 doi: 10.1007/s10589-025-00706-8 – volume: 80 start-page: 34 year: 2001 ident: 290_CR1 publication-title: Math. Program. – volume: 13 start-page: 369 year: 1998 ident: 290_CR6 publication-title: J. Global Optim. doi: 10.1023/A:1008369322970 – volume: 19 start-page: 445 issue: 1 year: 2008 ident: 290_CR28 publication-title: SIAM J. Optim. doi: 10.1137/07068463x – volume: 53 start-page: 29 issue: 1 year: 2012 ident: 290_CR29 publication-title: J. Global Optim. doi: 10.1007/s10898-010-9644-3 – ident: 290_CR50 – volume: 19 start-page: 15 issue: 1 year: 2004 ident: 290_CR22 publication-title: Optimization Methods and Software doi: 10.1080/10556780410001654241 – ident: 290_CR35 – volume: 32 start-page: 40 issue: 1 year: 2020 ident: 290_CR52 publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.2018.0883 – ident: 290_CR54 – ident: 290_CR24 doi: 10.1007/3-540-06583-0_43 – volume: 10 start-page: 391 year: 1997 ident: 290_CR9 publication-title: J. Global Optim. doi: 10.1023/A:1008293323270 – ident: 290_CR26 – volume: 169 start-page: 221 year: 2018 ident: 290_CR32 publication-title: Math. Program. doi: 10.1007/s10107-017-1208-6 – volume-title: Mathematical Programs With Equilibrium Constraints year: 1996 ident: 290_CR36 doi: 10.1017/CBO9780511983658 – volume: 3 start-page: 87 year: 1995 ident: 290_CR46 publication-title: Locat. Sci. doi: 10.1016/0966-8349(95)00008-6 – volume: 17 start-page: 533 year: 1965 ident: 290_CR37 publication-title: Can. J. Math. doi: 10.4153/CJM-1965-053-6 – volume: 27 start-page: 89 issue: 1 year: 2020 ident: 290_CR20 publication-title: Optimization Methods and Software doi: 10.1080/10556788.2010.512956 – volume: 8 start-page: 201 year: 1996 ident: 290_CR43 publication-title: J. Global Optim. doi: 10.1007/BF00138693 – ident: 290_CR19 doi: 10.1007/b97544 – volume: 24 start-page: 163 year: 2002 ident: 290_CR7 publication-title: J. Global Optim. doi: 10.1023/A:1020209017701 – volume: 106 start-page: 25 issue: 1 year: 2006 ident: 290_CR51 publication-title: Math. Program. doi: 10.1007/s10107-004-0559-y – ident: 290_CR30 – volume: 25 start-page: 53 issue: 1 year: 1957 ident: 290_CR34 publication-title: Econometrica doi: 10.2307/1907742 – volume: 16 start-page: 49 year: 2001 ident: 290_CR2 publication-title: Optimization Methods and Software doi: 10.1080/10556780108805828 – ident: 290_CR8 – volume: 186 start-page: 523 year: 2020 ident: 290_CR15 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-020-01716-8 – volume: 77 start-page: 687 year: 2020 ident: 290_CR31 publication-title: J. Global Optim. doi: 10.1007/s10898-020-00905-z – volume: 17 start-page: 443 year: 1991 ident: 290_CR45 publication-title: Parallel Comput. doi: 10.1016/S0167-8191(05)80147-4 – volume: 36 start-page: 89 issue: 1 year: 2006 ident: 290_CR33 publication-title: J. Global Optim. doi: 10.1007/s10898-006-9001-8 – ident: 290_CR48 – ident: 290_CR12 doi: 10.1007/0-387-30065-1_4 – volume: 156 start-page: 2439 issue: 13 year: 2008 ident: 290_CR44 publication-title: Discret. Appl. Math. doi: 10.1016/j.dam.2007.09.020 |
| SSID | ssj0000327839 |
| Score | 2.3477595 |
| SecondaryResourceType | online_first |
| Snippet | Indefinite quadratic programs (QPs) are known to be very difficult to be solved to global optimality, so are linear programs with linear complementarity... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | Improving the solution of indefinite quadratic programs and linear programs with complementarity constraints by a progressive MIP method |
| WOSCitedRecordID | wos001572007900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1867-2957 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000327839 issn: 1867-2949 databaseCode: RSV dateStart: 20090701 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqigEG3oi3PLCBhWM7iTMiRAUDVcVL3aKL7UhdUmjSSvwDfja-JH0MMHS0ZVnWneX7fD5_HyFXHiIEhochC0HFTCnrGISJZPinMgwyqaSEWmwi7vf1cJgMOuTm3xf829KHYCkYyq7iExJneOAGkUC5gpfXj0VChUsUjUC4ixxtTCQqaT_J_D3LSiBaiSi9nfXWsku2W-RI7xpX75GOK_bJ1gqf4AH5WaQIqMd1dL6t6DinyIqYjxBg0q8pWPS7oW1xVkmhsBTxJkyWfZihpXXFeVNgjip3vo2MszAqqpJm3xSa4VhKO3P0-WlAG0XqQ_Lee3i7f2St1AIzPr5XTGUiNLm2URgY7SJu4oTnkTXghMydyTIONsxAcwPcBCYB0JEF4U8EZ5UTII9ItxgX7phQ1PLIuXRKOqdia3WWa3_NlFGmgxicPiHXc7unnw2jRrrkTkb7pt6-aW3fVJyuNfqMbIraOQkLonPSrSZTd0E2zKwalZPLer_8AsGIuoU |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+solution+of+indefinite+quadratic+programs+and+linear+programs+with+complementarity+constraints+by+a+progressive+MIP+method&rft.jtitle=Mathematical+programming+computation&rft.au=Zhang%2C+Xinyao&rft.au=Han%2C+Shaoning&rft.au=Pang%2C+Jong-Shi&rft.date=2025-09-16&rft.issn=1867-2949&rft.eissn=1867-2957&rft_id=info:doi/10.1007%2Fs12532-025-00290-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12532_025_00290_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon |