Improving the solution of indefinite quadratic programs and linear programs with complementarity constraints by a progressive MIP method

Indefinite quadratic programs (QPs) are known to be very difficult to be solved to global optimality, so are linear programs with linear complementarity constraints (LPCCs). It is a classic result that for a QP with an optimal solution, the QP has an equivalent formulation as a certain LPCC in terms...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical programming computation
Main Authors: Zhang, Xinyao, Han, Shaoning, Pang, Jong-Shi
Format: Journal Article
Language:English
Published: 16.09.2025
ISSN:1867-2949, 1867-2957
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Indefinite quadratic programs (QPs) are known to be very difficult to be solved to global optimality, so are linear programs with linear complementarity constraints (LPCCs). It is a classic result that for a QP with an optimal solution, the QP has an equivalent formulation as a certain LPCC in terms of their globally optimal solutions. Thus it is natural to attempt to solve an (indefinite) QP as a LPCC. This paper presents a progressive mixed integer linear programming method for solving a general LPCC. Instead of solving the LPCC with a full set of integer variables expressing the complementarity conditions, the presented method solves a finite number of mixed integer subprograms by starting with a small fraction of integer variables and progressively increasing this fraction. After describing the PIP (for progressive integer programming) method and providing some details for its implementation and tuning possibilities, we demonstrate, via an extensive set of computational experiments, the superior performance of the progressive approach over the direct solution of the full-integer formulation of the LPCCs in obtaining high-quality solutions. It is also shown that the solution obtained at the termination of the PIP method is a local minimizer of the LPCC, a property that cannot be claimed by any known non-enumerative method for solving this nonconvex program. In all the experiments, the PIP method is initiated at a feasible solution of the LPCC obtained from a nonlinear programming solver, and with high likelihood, can successfully improve it. Thus, the PIP method can improve a stationary solution of an indefinite QP, something that is not likely to be achievable by a nonlinear programming method. Finally, some analysis is presented that provides a better understanding of the roles of the LPCC suboptimal solutions in the local optimality of the indefinite QP. This local aspect of the connection between a QP and its LPCC formulation has seemingly not been addressed in the literature.
AbstractList Indefinite quadratic programs (QPs) are known to be very difficult to be solved to global optimality, so are linear programs with linear complementarity constraints (LPCCs). It is a classic result that for a QP with an optimal solution, the QP has an equivalent formulation as a certain LPCC in terms of their globally optimal solutions. Thus it is natural to attempt to solve an (indefinite) QP as a LPCC. This paper presents a progressive mixed integer linear programming method for solving a general LPCC. Instead of solving the LPCC with a full set of integer variables expressing the complementarity conditions, the presented method solves a finite number of mixed integer subprograms by starting with a small fraction of integer variables and progressively increasing this fraction. After describing the PIP (for progressive integer programming) method and providing some details for its implementation and tuning possibilities, we demonstrate, via an extensive set of computational experiments, the superior performance of the progressive approach over the direct solution of the full-integer formulation of the LPCCs in obtaining high-quality solutions. It is also shown that the solution obtained at the termination of the PIP method is a local minimizer of the LPCC, a property that cannot be claimed by any known non-enumerative method for solving this nonconvex program. In all the experiments, the PIP method is initiated at a feasible solution of the LPCC obtained from a nonlinear programming solver, and with high likelihood, can successfully improve it. Thus, the PIP method can improve a stationary solution of an indefinite QP, something that is not likely to be achievable by a nonlinear programming method. Finally, some analysis is presented that provides a better understanding of the roles of the LPCC suboptimal solutions in the local optimality of the indefinite QP. This local aspect of the connection between a QP and its LPCC formulation has seemingly not been addressed in the literature.
Author Pang, Jong-Shi
Zhang, Xinyao
Han, Shaoning
Author_xml – sequence: 1
  givenname: Xinyao
  surname: Zhang
  fullname: Zhang, Xinyao
– sequence: 2
  givenname: Shaoning
  surname: Han
  fullname: Han, Shaoning
– sequence: 3
  givenname: Jong-Shi
  surname: Pang
  fullname: Pang, Jong-Shi
BookMark eNpFkMtOwzAQRS1UJErpD7DyDwTGznuJKh6VimAB62hiT1qjxC62W9Q_4LMJFMFsZu7V0SzOOZtYZ4mxSwFXAqC8DkLmqUxA5gmArCGRJ2wqqqJMZJ2Xk787q8_YPIQ3GCeVZZXWU_a5HLbe7Y1d87ghHly_i8ZZ7jpurKbOWBOJv-9Qe4xG8RFeexwCR6t5byyh_-8-TNxw5YZtTwPZiN7Ew5htiB6NjYG3B45HnEIwe-KPy2c-UNw4fcFOO-wDzX_3jL3e3b4sHpLV0_1ycbNKlMyymGStzFVX6SIXqqICVFlDV2iFJNOOVNsC6rzFChSCEqpGrAqNElJBOiOJ6YzJ41_lXQieumbrzYD-0AhovnU2R53NqLP50dnI9AuyGG96
Cites_doi 10.1057/jors.1982.210
10.1007/s10957-007-9263-4
10.1007/BF01918175
10.1287/opre.16.1.150
10.1007/s12532-011-0033-9
10.1007/BF00120662
10.2172/822567
10.1023/A:1008315627883
10.1007/s101070100255
10.1007/s10107-010-0395-1
10.1137/S1052623497325107
10.1016/0020-0190(90)90100-C
10.1023/A:1008656806889
10.1137/1.9780898719000
10.1007/s12532-018-0149-2
10.1007/s10107-010-0426-y
10.1109/99.714603
10.1007/s101070100244
10.1007/s10589-025-00706-8
10.1023/A:1008369322970
10.1137/07068463x
10.1007/s10898-010-9644-3
10.1080/10556780410001654241
10.1287/ijoc.2018.0883
10.1007/3-540-06583-0_43
10.1023/A:1008293323270
10.1007/s10107-017-1208-6
10.1017/CBO9780511983658
10.1016/0966-8349(95)00008-6
10.4153/CJM-1965-053-6
10.1080/10556788.2010.512956
10.1007/BF00138693
10.1007/b97544
10.1023/A:1020209017701
10.1007/s10107-004-0559-y
10.2307/1907742
10.1080/10556780108805828
10.1007/s10957-020-01716-8
10.1007/s10898-020-00905-z
10.1016/S0167-8191(05)80147-4
10.1007/s10898-006-9001-8
10.1007/0-387-30065-1_4
10.1016/j.dam.2007.09.020
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1007/s12532-025-00290-2
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1867-2957
ExternalDocumentID 10_1007_s12532_025_00290_2
GroupedDBID 06D
0R~
0VY
1N0
203
29M
2JY
2KG
2~H
30V
4.4
406
408
409
40D
40E
6NX
8UJ
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
AOCGG
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BA0
BAPOH
BGNMA
CITATION
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
ESBYG
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
GXS
HLICF
HMJXF
HQYDN
HRMNR
I0C
IJ-
IKXTQ
IWAJR
IXC
IXD
IZIGR
I~X
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O93
O9J
OAM
P9R
PT4
QOS
R89
RLLFE
ROL
RSV
S1Z
S27
S3B
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
ID FETCH-LOGICAL-c244t-4b25cf8d651c8e60c790f6dcae23fecbb0ad5ba80ca0c1c9aa86da2031ed4e2a3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001572007900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1867-2949
IngestDate Sat Nov 29 07:33:51 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-4b25cf8d651c8e60c790f6dcae23fecbb0ad5ba80ca0c1c9aa86da2031ed4e2a3
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s12532-025-00290-2.pdf
ParticipantIDs crossref_primary_10_1007_s12532_025_00290_2
PublicationCentury 2000
PublicationDate 2025-09-16
PublicationDateYYYYMMDD 2025-09-16
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-16
  day: 16
PublicationDecade 2020
PublicationTitle Mathematical programming computation
PublicationYear 2025
References 290_CR50
MS Bazaraa (290_CR5) 1982; 33
290_CR10
290_CR54
A Scozzari (290_CR44) 2008; 156
290_CR12
H Fang (290_CR20) 2020; 27
RE Burkard (290_CR9) 1997; 10
290_CR14
F Jara-Moroni (290_CR32) 2018; 169
290_CR17
290_CR18
290_CR19
JS Pang (290_CR40) 2010; 125
PM Pardalos (290_CR42) 1991; 1
SA Vavasis (290_CR49) 1990; 36
KM Anstreicher (290_CR1) 2001; 80
290_CR21
290_CR24
FJ Jara-Moroni (290_CR31) 2020; 77
290_CR25
290_CR26
J Hu (290_CR28) 2008; 19
CE Nugent (290_CR39) 1968; 16
A Wächter (290_CR51) 2006; 106
KM Anstreicher (290_CR3) 2002; 91
TS Motzkin (290_CR37) 1965; 17
ED Taillard (290_CR46) 1995; 3
ZQ Luo (290_CR36) 1996
TC Koopmans (290_CR34) 1957; 25
J Hu (290_CR29) 2012; 53
290_CR8
290_CR30
IM Bomze (290_CR7) 2002; 24
JJ Júdice (290_CR33) 2006; 36
Y Cui (290_CR15) 2020; 186
290_CR35
I Nowak (290_CR38) 1999; 14
JS Pang (290_CR41) 1999; 13
J Chen (290_CR13) 2012; 4
R Fletcher (290_CR23) 2002; 91
J Hu (290_CR27) 2012; 133
W Xia (290_CR52) 2020; 32
KM Anstreicher (290_CR2) 2001; 16
B Yu (290_CR53) 2019; 11
IM Bomze (290_CR6) 1998; 13
ED Taillard (290_CR45) 1991; 17
NV Sahinidis (290_CR43) 1996; 8
290_CR47
290_CR48
RH Byrd (290_CR11) 1999; 9
C Audel (290_CR4) 2007; 134
J Czyzyk (290_CR16) 1998; 5
R Fletcher (290_CR22) 2004; 19
References_xml – volume: 33
  start-page: 991
  issue: 11
  year: 1982
  ident: 290_CR5
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.1982.210
– volume: 134
  start-page: 353
  year: 2007
  ident: 290_CR4
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-007-9263-4
– ident: 290_CR10
  doi: 10.1007/BF01918175
– volume: 16
  start-page: 150
  year: 1968
  ident: 290_CR39
  publication-title: Oper. Res.
  doi: 10.1287/opre.16.1.150
– volume: 4
  start-page: 33
  issue: 1
  year: 2012
  ident: 290_CR13
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-011-0033-9
– volume: 1
  start-page: 15
  year: 1991
  ident: 290_CR42
  publication-title: J. Global Optim.
  doi: 10.1007/BF00120662
– ident: 290_CR18
– ident: 290_CR17
  doi: 10.2172/822567
– volume: 14
  start-page: 357
  issue: 4
  year: 1999
  ident: 290_CR38
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008315627883
– ident: 290_CR47
– volume: 91
  start-page: 563
  issue: 3
  year: 2002
  ident: 290_CR3
  publication-title: Math. Program.
  doi: 10.1007/s101070100255
– volume: 125
  start-page: 297
  year: 2010
  ident: 290_CR40
  publication-title: Mathematical Programming, Series B
  doi: 10.1007/s10107-010-0395-1
– volume: 9
  start-page: 877
  issue: 4
  year: 1999
  ident: 290_CR11
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623497325107
– volume: 36
  start-page: 73
  year: 1990
  ident: 290_CR49
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(90)90100-C
– volume: 13
  start-page: 111
  year: 1999
  ident: 290_CR41
  publication-title: Comput. Optim. Appl.
  doi: 10.1023/A:1008656806889
– ident: 290_CR14
  doi: 10.1137/1.9780898719000
– volume: 11
  start-page: 267
  issue: 2
  year: 2019
  ident: 290_CR53
  publication-title: Math. Program. Comput.
  doi: 10.1007/s12532-018-0149-2
– volume: 133
  start-page: 243
  year: 2012
  ident: 290_CR27
  publication-title: Mathematical Programming, Series A
  doi: 10.1007/s10107-010-0426-y
– volume: 5
  start-page: 68
  issue: 3
  year: 1998
  ident: 290_CR16
  publication-title: IEEE Journal on Computational Science and Engineering
  doi: 10.1109/99.714603
– ident: 290_CR25
– volume: 91
  start-page: 239
  issue: 2
  year: 2002
  ident: 290_CR23
  publication-title: Math. Program.
  doi: 10.1007/s101070100244
– ident: 290_CR21
  doi: 10.1007/s10589-025-00706-8
– volume: 80
  start-page: 34
  year: 2001
  ident: 290_CR1
  publication-title: Math. Program.
– volume: 13
  start-page: 369
  year: 1998
  ident: 290_CR6
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008369322970
– volume: 19
  start-page: 445
  issue: 1
  year: 2008
  ident: 290_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/07068463x
– volume: 53
  start-page: 29
  issue: 1
  year: 2012
  ident: 290_CR29
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-010-9644-3
– ident: 290_CR50
– volume: 19
  start-page: 15
  issue: 1
  year: 2004
  ident: 290_CR22
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556780410001654241
– ident: 290_CR35
– volume: 32
  start-page: 40
  issue: 1
  year: 2020
  ident: 290_CR52
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.2018.0883
– ident: 290_CR54
– ident: 290_CR24
  doi: 10.1007/3-540-06583-0_43
– volume: 10
  start-page: 391
  year: 1997
  ident: 290_CR9
  publication-title: J. Global Optim.
  doi: 10.1023/A:1008293323270
– ident: 290_CR26
– volume: 169
  start-page: 221
  year: 2018
  ident: 290_CR32
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1208-6
– volume-title: Mathematical Programs With Equilibrium Constraints
  year: 1996
  ident: 290_CR36
  doi: 10.1017/CBO9780511983658
– volume: 3
  start-page: 87
  year: 1995
  ident: 290_CR46
  publication-title: Locat. Sci.
  doi: 10.1016/0966-8349(95)00008-6
– volume: 17
  start-page: 533
  year: 1965
  ident: 290_CR37
  publication-title: Can. J. Math.
  doi: 10.4153/CJM-1965-053-6
– volume: 27
  start-page: 89
  issue: 1
  year: 2020
  ident: 290_CR20
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556788.2010.512956
– volume: 8
  start-page: 201
  year: 1996
  ident: 290_CR43
  publication-title: J. Global Optim.
  doi: 10.1007/BF00138693
– ident: 290_CR19
  doi: 10.1007/b97544
– volume: 24
  start-page: 163
  year: 2002
  ident: 290_CR7
  publication-title: J. Global Optim.
  doi: 10.1023/A:1020209017701
– volume: 106
  start-page: 25
  issue: 1
  year: 2006
  ident: 290_CR51
  publication-title: Math. Program.
  doi: 10.1007/s10107-004-0559-y
– ident: 290_CR30
– volume: 25
  start-page: 53
  issue: 1
  year: 1957
  ident: 290_CR34
  publication-title: Econometrica
  doi: 10.2307/1907742
– volume: 16
  start-page: 49
  year: 2001
  ident: 290_CR2
  publication-title: Optimization Methods and Software
  doi: 10.1080/10556780108805828
– ident: 290_CR8
– volume: 186
  start-page: 523
  year: 2020
  ident: 290_CR15
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-020-01716-8
– volume: 77
  start-page: 687
  year: 2020
  ident: 290_CR31
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-020-00905-z
– volume: 17
  start-page: 443
  year: 1991
  ident: 290_CR45
  publication-title: Parallel Comput.
  doi: 10.1016/S0167-8191(05)80147-4
– volume: 36
  start-page: 89
  issue: 1
  year: 2006
  ident: 290_CR33
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-006-9001-8
– ident: 290_CR48
– ident: 290_CR12
  doi: 10.1007/0-387-30065-1_4
– volume: 156
  start-page: 2439
  issue: 13
  year: 2008
  ident: 290_CR44
  publication-title: Discret. Appl. Math.
  doi: 10.1016/j.dam.2007.09.020
SSID ssj0000327839
Score 2.3477595
SecondaryResourceType online_first
Snippet Indefinite quadratic programs (QPs) are known to be very difficult to be solved to global optimality, so are linear programs with linear complementarity...
SourceID crossref
SourceType Index Database
Title Improving the solution of indefinite quadratic programs and linear programs with complementarity constraints by a progressive MIP method
WOSCitedRecordID wos001572007900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1867-2957
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000327839
  issn: 1867-2949
  databaseCode: RSV
  dateStart: 20090701
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELaqigEG3oi3PLCBhWM7iTMiRAUDVcVL3aKL7UhdUmjSSvwDfja-JH0MMHS0ZVnWneX7fD5_HyFXHiIEhochC0HFTCnrGISJZPinMgwyqaSEWmwi7vf1cJgMOuTm3xf829KHYCkYyq7iExJneOAGkUC5gpfXj0VChUsUjUC4ixxtTCQqaT_J_D3LSiBaiSi9nfXWsku2W-RI7xpX75GOK_bJ1gqf4AH5WaQIqMd1dL6t6DinyIqYjxBg0q8pWPS7oW1xVkmhsBTxJkyWfZihpXXFeVNgjip3vo2MszAqqpJm3xSa4VhKO3P0-WlAG0XqQ_Lee3i7f2St1AIzPr5XTGUiNLm2URgY7SJu4oTnkTXghMydyTIONsxAcwPcBCYB0JEF4U8EZ5UTII9ItxgX7phQ1PLIuXRKOqdia3WWa3_NlFGmgxicPiHXc7unnw2jRrrkTkb7pt6-aW3fVJyuNfqMbIraOQkLonPSrSZTd0E2zKwalZPLer_8AsGIuoU
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improving+the+solution+of+indefinite+quadratic+programs+and+linear+programs+with+complementarity+constraints+by+a+progressive+MIP+method&rft.jtitle=Mathematical+programming+computation&rft.au=Zhang%2C+Xinyao&rft.au=Han%2C+Shaoning&rft.au=Pang%2C+Jong-Shi&rft.date=2025-09-16&rft.issn=1867-2949&rft.eissn=1867-2957&rft_id=info:doi/10.1007%2Fs12532-025-00290-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s12532_025_00290_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1867-2949&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1867-2949&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1867-2949&client=summon