Fast Method for Accelerating Convergence of Iterative Partial Differential Equation Solvers by Changing System Matrix to Laplacian Counterpart

In this work, we find that the matrix representing the curl-curl operator in a partial differential equation solver of Maxwell's equations can be analytically decomposed into a gradient divergence operator and a Laplacian, both of which can be constructed from the mesh information without any n...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation Vol. 70; no. 2; pp. 1187 - 1197
Main Authors: Xue, Li, Jiao, Dan
Format: Journal Article
Language:English
Published: New York IEEE 01.02.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-926X, 1558-2221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this work, we find that the matrix representing the curl-curl operator in a partial differential equation solver of Maxwell's equations can be analytically decomposed into a gradient divergence operator and a Laplacian, both of which can be constructed from the mesh information without any need for computation. The curl-curl operator can hence be replaced by the Laplacian to find the divergence-free component of the field solution. The Laplacian is positive definite and well-conditioned. As a result, the convergence of an iterative solution of Maxwell's equations can be guaranteed, and also significantly accelerated. Based on the finding, we represent the divergence-free component of the unknown field solution by deducting its curl-free component. The curl-free component resides in the nullspace of the curl-curl operator, which is also analytically known from the mesh information no matter it is a regular grid or an unstructured mesh. After the divergence-free component is rapidly solved from a Laplacian counterpart of the original system matrix, the curl-free component can also be solved from a Laplacian matrix, and hence having fast and guaranteed convergence. The total computational cost of the proposed method is simply a small number of sparse matrix-vector multiplications. The proposed method has been successfully applied to solve ill-conditioned on-chip, packaging, and antenna radiation problems at both low and high frequencies, involving both inhomogeneous dielectrics and lossy conductors. Numerical experiments have demonstrated its fast and guaranteed convergence, as well as trivial computational cost independent of problem size.
AbstractList In this work, we find that the matrix representing the curl-curl operator in a partial differential equation solver of Maxwell's equations can be analytically decomposed into a gradient divergence operator and a Laplacian, both of which can be constructed from the mesh information without any need for computation. The curl-curl operator can hence be replaced by the Laplacian to find the divergence-free component of the field solution. The Laplacian is positive definite and well-conditioned. As a result, the convergence of an iterative solution of Maxwell's equations can be guaranteed, and also significantly accelerated. Based on the finding, we represent the divergence-free component of the unknown field solution by deducting its curl-free component. The curl-free component resides in the nullspace of the curl-curl operator, which is also analytically known from the mesh information no matter it is a regular grid or an unstructured mesh. After the divergence-free component is rapidly solved from a Laplacian counterpart of the original system matrix, the curl-free component can also be solved from a Laplacian matrix, and hence having fast and guaranteed convergence. The total computational cost of the proposed method is simply a small number of sparse matrix-vector multiplications. The proposed method has been successfully applied to solve ill-conditioned on-chip, packaging, and antenna radiation problems at both low and high frequencies, involving both inhomogeneous dielectrics and lossy conductors. Numerical experiments have demonstrated its fast and guaranteed convergence, as well as trivial computational cost independent of problem size.
Author Jiao, Dan
Xue, Li
Author_xml – sequence: 1
  givenname: Li
  orcidid: 0000-0001-7089-8045
  surname: Xue
  fullname: Xue, Li
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
– sequence: 2
  givenname: Dan
  orcidid: 0000-0002-4080-2716
  surname: Jiao
  fullname: Jiao, Dan
  email: djiao@purdue.edu
  organization: School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
BookMark eNo9kEtLAzEUhYMoWB97wU3A9dQ8ZybLUusDWiy0grshnd7UkTGZJqnYP-FvNn3g6nK453wHzgU6tc4CQjeU9Ckl6n4-mPYZYbTPKaWSqBPUo1KWGWOMnqIeIbTMFMvfz9FFCJ9JilKIHvp91CHiCcQPt8TGeTyoa2jB69jYFR46-w1-BbYG7Ax-ifvHN-Cp9rHRLX5ojAEPdi9G6036Ootnrk2xgBdbPPzQdrVDzbYhwhee6OibHxwdHuuu1XWjbWrZ2ETuEvMKnRndBrg-3kv09jiaD5-z8evTy3AwzmomRMwYoYQpXRDNxEItjWEllTUrQYqcm2JJuJK6FmrJZamMzMsC-CJpoZgulBb8Et0duJ136w2EWH26jbepsmI5E4XMudi5yMFVexeCB1N1vvnSfltRUu1Wr9Lq1W716rh6itweIg0A_NuV5IqonP8B6H-A7Q
CODEN IETPAK
Cites_doi 10.1002/mop.23403
10.1002/mop.23396
10.1109/TMTT.2015.2472003
10.1137/1.9780898718003
10.1109/8.761074
10.1109/TMTT.2003.815263
10.1109/20.43865
10.1109/TAP.2002.801377
10.1109/8.899680
10.1109/22.993420
10.1109/TMTT.2019.2955082
10.1109/TADVP.2009.2029561
10.1109/IEEECONF35879.2020.9329743
10.1109/TMTT.2020.2966699
10.1109/TAP.2014.2322899
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
8FD
L7M
DOI 10.1109/TAP.2021.3111509
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL) (UW System Shared)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2221
EndPage 1197
ExternalDocumentID 10_1109_TAP_2021_3111509
9539096
Genre orig-research
GrantInformation_xml – fundername: Defense Advanced Research Projects Agency (DARPA) through a grant
  grantid: FA8650-18-2-7847
  funderid: 10.13039/100000185
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TAF
TN5
VH1
VJK
VOH
AAYXX
CITATION
7SP
8FD
L7M
ID FETCH-LOGICAL-c244t-201029a70a24b9dff2815c28e5463f7d0395ac49d3589f5687e3bc49492a79a43
IEDL.DBID RIE
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000751857700042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-926X
IngestDate Mon Jun 30 10:19:42 EDT 2025
Sat Nov 29 05:23:15 EST 2025
Wed Aug 27 03:00:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c244t-201029a70a24b9dff2815c28e5463f7d0395ac49d3589f5687e3bc49492a79a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4080-2716
0000-0001-7089-8045
PQID 2624756344
PQPubID 85476
PageCount 11
ParticipantIDs crossref_primary_10_1109_TAP_2021_3111509
proquest_journals_2624756344
ieee_primary_9539096
PublicationCentury 2000
PublicationDate 2022-02-01
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on antennas and propagation
PublicationTitleAbbrev TAP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref10
Wilton (ref11) 1981
ref2
ref1
ref16
ref18
ref8
ref7
ref9
ref4
Jin (ref17) 2014
ref3
ref5
Brandt (ref6) 1985
References_xml – ident: ref16
  doi: 10.1002/mop.23403
– ident: ref3
  doi: 10.1002/mop.23396
– ident: ref18
  doi: 10.1109/TMTT.2015.2472003
– volume-title: The Finite Element Method in Electromagnetics
  year: 2014
  ident: ref17
– ident: ref1
  doi: 10.1137/1.9780898718003
– ident: ref12
  doi: 10.1109/8.761074
– ident: ref15
  doi: 10.1109/TMTT.2003.815263
– ident: ref14
  doi: 10.1109/20.43865
– volume-title: Algebraic Multigrid (AMG) for Sparse Matrix Equations, in Sparsity and its Applications
  year: 1985
  ident: ref6
– ident: ref2
  doi: 10.1109/TAP.2002.801377
– start-page: 24
  year: 1981
  ident: ref11
  article-title: On improving the electric field integral equation at low frequencies
  publication-title: URSI Radio Sci. Meet. Dig.
– ident: ref13
  doi: 10.1109/8.899680
– ident: ref4
  doi: 10.1109/22.993420
– ident: ref9
  doi: 10.1109/TMTT.2019.2955082
– ident: ref5
  doi: 10.1109/TADVP.2009.2029561
– ident: ref7
  doi: 10.1109/IEEECONF35879.2020.9329743
– ident: ref10
  doi: 10.1109/TMTT.2020.2966699
– ident: ref8
  doi: 10.1109/TAP.2014.2322899
SSID ssj0014844
Score 2.388583
Snippet In this work, we find that the matrix representing the curl-curl operator in a partial differential equation solver of Maxwell's equations can be analytically...
In this work, we find that the matrix representing the curl–curl operator in a partial differential equation solver of Maxwell’s equations can be analytically...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 1187
SubjectTerms Computational efficiency
Computing costs
Conductors
Convergence
Divergence
Fast convergence
fast method
finite-difference method
finite-element method
frequency domain
Frequency-domain analysis
Helmholtz decomposition
Iterative methods
Iterative solution
iterative solver
Laplace equations
Mathematical analysis
Matrix decomposition
Maxwell equations
Operators (mathematics)
partial differential equation method
Partial differential equations
Solvers
Sparse matrices
Title Fast Method for Accelerating Convergence of Iterative Partial Differential Equation Solvers by Changing System Matrix to Laplacian Counterpart
URI https://ieeexplore.ieee.org/document/9539096
https://www.proquest.com/docview/2624756344
Volume 70
WOSCitedRecordID wos000751857700042&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL) (UW System Shared)
  customDbUrl:
  eissn: 1558-2221
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014844
  issn: 0018-926X
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLbGxAEOvBHjpRy4IFFo07RJjhMwgTTQJB7arUrTBHFZYesQ_Al-M3HaTSC4cGul1qpiJ7brz58BjgSzWgvNgtzwPGBJyAIRpzagRcFStCnh0e6PfX57K4ZDOWjBybwXxhjjwWfmFC99Lb8o9RR_lZ3JxGXoMl2ABc553as1rxgwwWrG5chtYJoOZyXJUJ7ddwcuEaSRy08x_pE_XJCfqfLrIPbepbf6v-9ag5UmiiTdWu3r0DKjDVj-xi24CZ89NanIjR8QTVxkSrpaOxeDCh89kXMEm_u-S0NKS649t7I7-MgATcmJvmgGp_iby9eaEJzclQiknpD8g_i2BBRVc56TG-T6fydVSfoKgV7O7Ag2vCOm0cncgofe5f35VdAMXwi08_hVgFVyKhUPFWW5LKylIko0FQb58y0vwlgmSjNZxImQNkkFN3GukeuGKi4Vi7ehPSpHZgeI0e5csUZFWiXMxkpJqi2S4rjk2IV7UQeOZ_rIXmqOjcznJqHMnO4y1F3W6K4Dm7j-8-eape_A_kyBWbMJJxlNKeNJGjO2-_dbe7BEsZvBg7D3oV2Np-YAFvVb9TwZH3r7-gKKb89M
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nj9MwEB2VshJw4KsgCgV84LLShiaOndjHqrRqRVtVorvqLXIcG-0lWdoUwZ_Y37weJ61YwYVbIiWjyDP2zGTevAH4JJjVWmgW5CbNA8ZDFog4sQEtCpagTQmPdr9apKuV2G7lugMXp14YY4wHn5nPeOlr-UWlD_irbCi5y9Bl8gAecsZo1HRrnWoGTLCGczlyW5gm22NRMpTDzWjtUkEauQwVIyB5zwn5qSp_HcXev0yf_d-XPYenbRxJRo3iX0DHlC_hyR_sgj24nap9TZZ-RDRxsSkZae2cDKq8_E7GCDf3nZeGVJbMPbuyO_rIGo3Jif7Sjk7xN5MfDSU4-VYhlHpP8t_ENyagqIb1nCyR7f8XqSuyUAj1coZHsOUdUY1O5iu4nE4241nQjl8ItPP5dYB1cipVGirKcllYS0XENRUGGfRtWoSx5EozWcRcSMsTkZo418h2Q1UqFYtfQ7esSvMGiNHuZLFGRVpxZmOlJNUWaXFceuwCvqgP50d9ZDcNy0bms5NQZk53Geoua3XXhx6u_-m5dun7MDgqMGu34T6jCWUpT2LG3v77rY_waLZZLrLFfPX1HTym2NvgIdkD6Na7g3kPZ_pnfb3fffC2dgd5ZtKT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+Method+for+Accelerating+Convergence+of+Iterative+Partial+Differential+Equation+Solvers+by+Changing+System+Matrix+to+Laplacian+Counterpart&rft.jtitle=IEEE+transactions+on+antennas+and+propagation&rft.au=Li%2C+Xue&rft.au=Jiao%2C+Dan&rft.date=2022-02-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=0018-926X&rft.eissn=1558-2221&rft.volume=70&rft.issue=2&rft.spage=1187&rft_id=info:doi/10.1109%2FTAP.2021.3111509&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-926X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-926X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-926X&client=summon