Linear Transformer Based U-Shaped Lightweight Segmentation Network

The widespread development and application of embedded medical devices necessitate the corresponding research in lightweight, energy-efficient models. Although transformer-based segmentation models have shown promise in various visual tasks, inherent challenges, including the lack of inductive bias...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of advanced computational intelligence and intelligent informatics Jg. 29; H. 6; S. 1319 - 1328
Hauptverfasser: He, Hongli, Sun, Changhao, Wang, Zhaoyuan, Dan, Yongping
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Tokyo Fuji Technology Press Co. Ltd 20.11.2025
Schlagworte:
ISSN:1343-0130, 1883-8014
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The widespread development and application of embedded medical devices necessitate the corresponding research in lightweight, energy-efficient models. Although transformer-based segmentation models have shown promise in various visual tasks, inherent challenges, including the lack of inductive bias and an overreliance on extensive training data, emerge when striving for optimal model efficiency. By contrast, convolutional neural networks (CNNs), with their intrinsic inductive biases and parameter-sharing mechanisms, enable a reduction in the number of parameters and a focus on capturing local features, thereby lowering computational costs. However, reliance solely on transformers does not meet the practical demands of lightweight model efficiency. Hence, the integration of CNNs with transformers presents a promising research trajectory for constructing efficient and lightweight networks. This hybrid approach leverages the strengths of CNNs in feature extraction and the ability of transformers to model global dependencies, achieving a balance between model performance and efficiency. In this paper, we propose MobileViTv2s, a novel lightweight segmentation network that integrates CNNs with a linear transformer. The proposed network efficiently extracts local features via CNNs, whereas transformers adeptly manage complex feature relationships, thereby facilitating precise segmentation in intricate contexts such as medical imaging. The model demonstrates significant potential and applicability in the advancement of lightweight deep learning models. Experimental results revealed that the proposed model achieved up to a 14.34-fold improvement in efficiency, a 9.91-fold reduction in the number of parameters, and comparable or superior segmentation accuracy, while achieving a markedly lower Hausdorff distance.
AbstractList The widespread development and application of embedded medical devices necessitate the corresponding research in lightweight, energy-efficient models. Although transformer-based segmentation models have shown promise in various visual tasks, inherent challenges, including the lack of inductive bias and an overreliance on extensive training data, emerge when striving for optimal model efficiency. By contrast, convolutional neural networks (CNNs), with their intrinsic inductive biases and parameter-sharing mechanisms, enable a reduction in the number of parameters and a focus on capturing local features, thereby lowering computational costs. However, reliance solely on transformers does not meet the practical demands of lightweight model efficiency. Hence, the integration of CNNs with transformers presents a promising research trajectory for constructing efficient and lightweight networks. This hybrid approach leverages the strengths of CNNs in feature extraction and the ability of transformers to model global dependencies, achieving a balance between model performance and efficiency. In this paper, we propose MobileViTv2s, a novel lightweight segmentation network that integrates CNNs with a linear transformer. The proposed network efficiently extracts local features via CNNs, whereas transformers adeptly manage complex feature relationships, thereby facilitating precise segmentation in intricate contexts such as medical imaging. The model demonstrates significant potential and applicability in the advancement of lightweight deep learning models. Experimental results revealed that the proposed model achieved up to a 14.34-fold improvement in efficiency, a 9.91-fold reduction in the number of parameters, and comparable or superior segmentation accuracy, while achieving a markedly lower Hausdorff distance.
Author Sun, Changhao
He, Hongli
Wang, Zhaoyuan
Dan, Yongping
Author_xml – sequence: 1
  givenname: Hongli
  orcidid: 0009-0001-5128-5988
  surname: He
  fullname: He, Hongli
  organization: Rail Transit Institute, Henan College of Transportation, No.259 Tonghui Road, Zhengzhou 450061, China
– sequence: 2
  givenname: Changhao
  orcidid: 0000-0003-4554-6018
  surname: Sun
  fullname: Sun, Changhao
  organization: School of Integrated Circuits, Zhongyuan University of Technology, No.41 Zhongyuan Road, Zhengzhou 450007, China
– sequence: 3
  givenname: Zhaoyuan
  orcidid: 0009-0008-6472-1532
  surname: Wang
  fullname: Wang, Zhaoyuan
  organization: School of Integrated Circuits, Zhongyuan University of Technology, No.41 Zhongyuan Road, Zhengzhou 450007, China
– sequence: 4
  givenname: Yongping
  orcidid: 0000-0003-1636-7416
  surname: Dan
  fullname: Dan, Yongping
  organization: School of Integrated Circuits, Zhongyuan University of Technology, No.41 Zhongyuan Road, Zhengzhou 450007, China
BookMark eNotkMtuwjAQRa2KSqWUH-gqUtehfiWxlwX1JUXtAlhbE9sB0xKndhDq39dAN3PPSFcz0rlFo853FqF7gmcUy7J43IF2zqWFFrOeMCKv0JgIwXKBCR8lZpzlmDB8g6Yx7jBOTEvMyRjNa9dZCNkqQBdbH_Y2ZHOI1mTrfLmFPkHtNtvhaE8zW9rN3nYDDM532Ycdjj583aHrFr6jnf7nBK1fnleLt7z-fH1fPNW5ppzLXKdoGDMGODSskpUwlSG80RVQISRIY6RhDdGiLEByAq0mRVWWRHBMqAE2QQ-Xu33wPwcbB7Xzh9Cll4rRispSYkFTi15aOvgYg21VH9wewq8iWJ11qYsuddKlzrrYHxiFYEQ
Cites_doi 10.1109/CVPR.2015.7298965
10.1109/ISSCC.2005.1494019
10.1109/ICCV48922.2021.00061
10.1038/s41592-020-01008-z
10.1109/ICCV48922.2021.00009
10.1016/j.media.2020.101821
10.1016/j.media.2024.103280
10.1109/TIM.2022.3178991
10.1109/ACCESS.2024.3451304
10.1007/s10278-019-00227-x
10.1109/ICCV51070.2023.00548
10.1109/TPAMI.1986.4767769
10.1109/WACV56688.2023.00614
10.1186/s12859-023-05196-1
10.1016/j.compbiomed.2024.108284
10.1109/TMI.2013.2290491
10.1109/ITME.2018.00080
10.1007/978-3-030-00889-5_1
10.1016/j.media.2023.102802
10.1016/j.compag.2022.107297
10.2352/J.ImagingSci.Technol.2020.64.2.020508
10.1109/TMI.2013.2284099
10.1016/j.media.2023.102762
10.3389/fbioe.2024.1398237
10.1002/mp.14676
10.1007/978-3-319-24574-4_28
10.1109/TMI.2018.2791721
10.1101/2020.05.20.20100362
10.1007/978-3-031-25066-8_9
10.1109/SCT.1988.5265
10.1016/j.jksuci.2023.02.012
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
CorporateAuthor Editorial Office
CorporateAuthor_xml – name: Editorial Office
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2025.p1319
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 1328
ExternalDocumentID 10_20965_jaciii_2025_p1319
GroupedDBID AAYXX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
ISHAI
JSI
JSP
K7-
P2P
PHGZM
PHGZT
PQGLB
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2449-cc24b33dda4ab37978d7d14bc7a2889a9dd9d3b1c865a941afc15766184012da3
IEDL.DBID P5Z
ISSN 1343-0130
IngestDate Thu Nov 20 00:30:52 EST 2025
Thu Nov 27 00:51:19 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2449-cc24b33dda4ab37978d7d14bc7a2889a9dd9d3b1c865a941afc15766184012da3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-5128-5988
0009-0008-6472-1532
0000-0003-4554-6018
0000-0003-1636-7416
OpenAccessLink https://doi.org/10.20965/jaciii.2025.p1319
PQID 3272969082
PQPubID 4911628
PageCount 10
ParticipantIDs proquest_journals_3272969082
crossref_primary_10_20965_jaciii_2025_p1319
PublicationCentury 2000
PublicationDate 2025-11-20
PublicationDateYYYYMMDD 2025-11-20
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-20
  day: 20
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2025
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2025.p1319-24
key-10.20965/jaciii.2025.p1319-23
key-10.20965/jaciii.2025.p1319-22
key-10.20965/jaciii.2025.p1319-21
key-10.20965/jaciii.2025.p1319-20
key-10.20965/jaciii.2025.p1319-41
key-10.20965/jaciii.2025.p1319-40
key-10.20965/jaciii.2025.p1319-29
key-10.20965/jaciii.2025.p1319-28
key-10.20965/jaciii.2025.p1319-27
key-10.20965/jaciii.2025.p1319-26
key-10.20965/jaciii.2025.p1319-25
key-10.20965/jaciii.2025.p1319-13
key-10.20965/jaciii.2025.p1319-35
key-10.20965/jaciii.2025.p1319-12
key-10.20965/jaciii.2025.p1319-34
key-10.20965/jaciii.2025.p1319-11
key-10.20965/jaciii.2025.p1319-33
key-10.20965/jaciii.2025.p1319-10
key-10.20965/jaciii.2025.p1319-32
key-10.20965/jaciii.2025.p1319-4
key-10.20965/jaciii.2025.p1319-31
key-10.20965/jaciii.2025.p1319-3
key-10.20965/jaciii.2025.p1319-30
key-10.20965/jaciii.2025.p1319-2
key-10.20965/jaciii.2025.p1319-1
key-10.20965/jaciii.2025.p1319-19
key-10.20965/jaciii.2025.p1319-18
key-10.20965/jaciii.2025.p1319-17
key-10.20965/jaciii.2025.p1319-39
key-10.20965/jaciii.2025.p1319-16
key-10.20965/jaciii.2025.p1319-38
key-10.20965/jaciii.2025.p1319-15
key-10.20965/jaciii.2025.p1319-37
key-10.20965/jaciii.2025.p1319-14
key-10.20965/jaciii.2025.p1319-36
key-10.20965/jaciii.2025.p1319-8
key-10.20965/jaciii.2025.p1319-7
key-10.20965/jaciii.2025.p1319-6
key-10.20965/jaciii.2025.p1319-5
key-10.20965/jaciii.2025.p1319-9
References_xml – ident: key-10.20965/jaciii.2025.p1319-7
  doi: 10.1109/CVPR.2015.7298965
– ident: key-10.20965/jaciii.2025.p1319-24
  doi: 10.1109/ISSCC.2005.1494019
– ident: key-10.20965/jaciii.2025.p1319-29
  doi: 10.1109/ICCV48922.2021.00061
– ident: key-10.20965/jaciii.2025.p1319-11
  doi: 10.1038/s41592-020-01008-z
– ident: key-10.20965/jaciii.2025.p1319-32
  doi: 10.1109/ICCV48922.2021.00009
– ident: key-10.20965/jaciii.2025.p1319-2
  doi: 10.1016/j.media.2020.101821
– ident: key-10.20965/jaciii.2025.p1319-27
– ident: key-10.20965/jaciii.2025.p1319-9
– ident: key-10.20965/jaciii.2025.p1319-22
  doi: 10.1016/j.media.2024.103280
– ident: key-10.20965/jaciii.2025.p1319-41
– ident: key-10.20965/jaciii.2025.p1319-17
  doi: 10.1109/TIM.2022.3178991
– ident: key-10.20965/jaciii.2025.p1319-15
  doi: 10.1109/ACCESS.2024.3451304
– ident: key-10.20965/jaciii.2025.p1319-5
  doi: 10.1007/s10278-019-00227-x
– ident: key-10.20965/jaciii.2025.p1319-21
  doi: 10.1109/ICCV51070.2023.00548
– ident: key-10.20965/jaciii.2025.p1319-23
  doi: 10.1109/TPAMI.1986.4767769
– ident: key-10.20965/jaciii.2025.p1319-39
  doi: 10.1109/WACV56688.2023.00614
– ident: key-10.20965/jaciii.2025.p1319-19
  doi: 10.1186/s12859-023-05196-1
– ident: key-10.20965/jaciii.2025.p1319-26
  doi: 10.1016/j.compbiomed.2024.108284
– ident: key-10.20965/jaciii.2025.p1319-36
  doi: 10.1109/TMI.2013.2290491
– ident: key-10.20965/jaciii.2025.p1319-37
  doi: 10.1109/ITME.2018.00080
– ident: key-10.20965/jaciii.2025.p1319-31
– ident: key-10.20965/jaciii.2025.p1319-12
– ident: key-10.20965/jaciii.2025.p1319-14
– ident: key-10.20965/jaciii.2025.p1319-10
  doi: 10.1007/978-3-030-00889-5_1
– ident: key-10.20965/jaciii.2025.p1319-16
  doi: 10.1016/j.media.2023.102802
– ident: key-10.20965/jaciii.2025.p1319-20
  doi: 10.1016/j.compag.2022.107297
– ident: key-10.20965/jaciii.2025.p1319-28
– ident: key-10.20965/jaciii.2025.p1319-1
  doi: 10.2352/J.ImagingSci.Technol.2020.64.2.020508
– ident: key-10.20965/jaciii.2025.p1319-35
  doi: 10.1109/TMI.2013.2284099
– ident: key-10.20965/jaciii.2025.p1319-3
  doi: 10.1016/j.media.2023.102762
– ident: key-10.20965/jaciii.2025.p1319-18
  doi: 10.3389/fbioe.2024.1398237
– ident: key-10.20965/jaciii.2025.p1319-34
  doi: 10.1002/mp.14676
– ident: key-10.20965/jaciii.2025.p1319-8
  doi: 10.1007/978-3-319-24574-4_28
– ident: key-10.20965/jaciii.2025.p1319-4
  doi: 10.1109/TMI.2018.2791721
– ident: key-10.20965/jaciii.2025.p1319-33
  doi: 10.1101/2020.05.20.20100362
– ident: key-10.20965/jaciii.2025.p1319-40
  doi: 10.1007/978-3-031-25066-8_9
– ident: key-10.20965/jaciii.2025.p1319-6
  doi: 10.1109/SCT.1988.5265
– ident: key-10.20965/jaciii.2025.p1319-38
– ident: key-10.20965/jaciii.2025.p1319-13
– ident: key-10.20965/jaciii.2025.p1319-30
– ident: key-10.20965/jaciii.2025.p1319-25
  doi: 10.1016/j.jksuci.2023.02.012
SSID ssj0001326041
ssib051641541
Score 2.3409328
Snippet The widespread development and application of embedded medical devices necessitate the corresponding research in lightweight, energy-efficient models. Although...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1319
SubjectTerms Artificial neural networks
Bias
Efficiency
Feature extraction
Machine learning
Medical devices
Medical electronics
Medical imaging
Metric space
Parameters
Visual tasks
Title Linear Transformer Based U-Shaped Lightweight Segmentation Network
URI https://www.proquest.com/docview/3272969082
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051641541
  issn: 1343-0130
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66efDi_InTOXrwJnFNk7XNSZxsCEoZboPhpaRJ5w-wq9vUf9_32pTpxYuXthAoJe_lve9L895HyLmP1VPS1RSgvwsEJVVU-qmhvvGVguAYKFGKTQRRFE6ncmg33Jb2WGUVE4tAbeYa98g73AMY6KNA91X-TlE1Cv-uWgmNTVLHLgko3TDsPlb-1AUqAAiBrfdcAKu4ouRgAo8Rcbeso_GwB0rnVWls6OABDLjMGcfmOz9z1e9QXeSfQeO_X75LdizydK5LV9kjG2m2TxqVqoNjF_kB6QE9Bfd3xhWkhcEe5DrjTOjoWeXwcI-M_qvYVHVG6dObrV_KnKg8VH5IJoP--OaWWqUFqiG9S6rhlnBujBIq4QEwSxMYJhIdKC8MpZLGSMMTpkO_q6RgaqYZEBUUi4EEZxQ_IrVsnqXHxJnNBCA0oTxfI3eTic8SOWMYG1zFZdIkF9WcxnnZUCMGIlJYIC4tEKMF4sICTdKq5jS2i2sZryf05O_hU7KNr8LSQc9tkdpq8ZGekS39uXpZLtqk3utHw4d2QcPhehfQduE_32Ecx5M
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB7qA_TiW6xWzUFPsjbJrkn2IOKrKK1FsEJvcbOb-ADb2laLf8rf6EweVC_eevCUwMKS5Nud-b7JzgzAnkfZU9LWDKm_jQIlVkx6sWGe8ZRC4-grkTWb8JvNoN2WtyX4KnJh6FhlYRNTQ226mmLkVe4iDfSoQfdJ741R1yj6u1q00MiWRT3-HKFkGxxfXyC--65bu2ydX7G8qwDT6Mok03iJODdGCRVxH1WU8Y0jIu0rNwikksZIwyNHB96RksJRiXaQlFNjFDTmRnGcdwpmBA982ld1nxXr9wilBzISZxzjQW5ki0zzCTq2xO0sb8elmivVF6WpgISLtOOw53Aq9vPTN_52Dam_qy3-ty-1BAs5s7ZOs62wDKW4swKLRdcKKzdiq3CG8hufzmoVlB0Hz9CXG-ue3T2pHt40KGIxSoPG1l38-JrnZ3WsZnZofg3uJ_Im6zDd6XbiDbCSRCADFcr1NGlTGXlOJBOHbJ-tuIzKcFBgGPaygiEhCq0U8TBDPCTEwxTxMlQKDMPceAzCMYCbfw_vwtxV66YRNq6b9S2Yp2kpTdK1KzA97L_H2zCrP4bPg_5Ouk4teJg03N9-xCBi
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Transformer+Based+U-Shaped+Lightweight+Segmentation+Network&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=He%2C+Hongli&rft.au=Sun%2C+Changhao&rft.au=Wang%2C+Zhaoyuan&rft.au=Dan%2C+Yongping&rft.date=2025-11-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=6&rft.spage=1319&rft.epage=1328&rft_id=info:doi/10.20965%2Fjaciii.2025.p1319&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1319
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon