Linear Transformer Based U-Shaped Lightweight Segmentation Network
The widespread development and application of embedded medical devices necessitate the corresponding research in lightweight, energy-efficient models. Although transformer-based segmentation models have shown promise in various visual tasks, inherent challenges, including the lack of inductive bias...
Gespeichert in:
| Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics Jg. 29; H. 6; S. 1319 - 1328 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Tokyo
Fuji Technology Press Co. Ltd
20.11.2025
|
| Schlagworte: | |
| ISSN: | 1343-0130, 1883-8014 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The widespread development and application of embedded medical devices necessitate the corresponding research in lightweight, energy-efficient models. Although transformer-based segmentation models have shown promise in various visual tasks, inherent challenges, including the lack of inductive bias and an overreliance on extensive training data, emerge when striving for optimal model efficiency. By contrast, convolutional neural networks (CNNs), with their intrinsic inductive biases and parameter-sharing mechanisms, enable a reduction in the number of parameters and a focus on capturing local features, thereby lowering computational costs. However, reliance solely on transformers does not meet the practical demands of lightweight model efficiency. Hence, the integration of CNNs with transformers presents a promising research trajectory for constructing efficient and lightweight networks. This hybrid approach leverages the strengths of CNNs in feature extraction and the ability of transformers to model global dependencies, achieving a balance between model performance and efficiency. In this paper, we propose MobileViTv2s, a novel lightweight segmentation network that integrates CNNs with a linear transformer. The proposed network efficiently extracts local features via CNNs, whereas transformers adeptly manage complex feature relationships, thereby facilitating precise segmentation in intricate contexts such as medical imaging. The model demonstrates significant potential and applicability in the advancement of lightweight deep learning models. Experimental results revealed that the proposed model achieved up to a 14.34-fold improvement in efficiency, a 9.91-fold reduction in the number of parameters, and comparable or superior segmentation accuracy, while achieving a markedly lower Hausdorff distance. |
|---|---|
| AbstractList | The widespread development and application of embedded medical devices necessitate the corresponding research in lightweight, energy-efficient models. Although transformer-based segmentation models have shown promise in various visual tasks, inherent challenges, including the lack of inductive bias and an overreliance on extensive training data, emerge when striving for optimal model efficiency. By contrast, convolutional neural networks (CNNs), with their intrinsic inductive biases and parameter-sharing mechanisms, enable a reduction in the number of parameters and a focus on capturing local features, thereby lowering computational costs. However, reliance solely on transformers does not meet the practical demands of lightweight model efficiency. Hence, the integration of CNNs with transformers presents a promising research trajectory for constructing efficient and lightweight networks. This hybrid approach leverages the strengths of CNNs in feature extraction and the ability of transformers to model global dependencies, achieving a balance between model performance and efficiency. In this paper, we propose MobileViTv2s, a novel lightweight segmentation network that integrates CNNs with a linear transformer. The proposed network efficiently extracts local features via CNNs, whereas transformers adeptly manage complex feature relationships, thereby facilitating precise segmentation in intricate contexts such as medical imaging. The model demonstrates significant potential and applicability in the advancement of lightweight deep learning models. Experimental results revealed that the proposed model achieved up to a 14.34-fold improvement in efficiency, a 9.91-fold reduction in the number of parameters, and comparable or superior segmentation accuracy, while achieving a markedly lower Hausdorff distance. |
| Author | Sun, Changhao He, Hongli Wang, Zhaoyuan Dan, Yongping |
| Author_xml | – sequence: 1 givenname: Hongli orcidid: 0009-0001-5128-5988 surname: He fullname: He, Hongli organization: Rail Transit Institute, Henan College of Transportation, No.259 Tonghui Road, Zhengzhou 450061, China – sequence: 2 givenname: Changhao orcidid: 0000-0003-4554-6018 surname: Sun fullname: Sun, Changhao organization: School of Integrated Circuits, Zhongyuan University of Technology, No.41 Zhongyuan Road, Zhengzhou 450007, China – sequence: 3 givenname: Zhaoyuan orcidid: 0009-0008-6472-1532 surname: Wang fullname: Wang, Zhaoyuan organization: School of Integrated Circuits, Zhongyuan University of Technology, No.41 Zhongyuan Road, Zhengzhou 450007, China – sequence: 4 givenname: Yongping orcidid: 0000-0003-1636-7416 surname: Dan fullname: Dan, Yongping organization: School of Integrated Circuits, Zhongyuan University of Technology, No.41 Zhongyuan Road, Zhengzhou 450007, China |
| BookMark | eNotkMtuwjAQRa2KSqWUH-gqUtehfiWxlwX1JUXtAlhbE9sB0xKndhDq39dAN3PPSFcz0rlFo853FqF7gmcUy7J43IF2zqWFFrOeMCKv0JgIwXKBCR8lZpzlmDB8g6Yx7jBOTEvMyRjNa9dZCNkqQBdbH_Y2ZHOI1mTrfLmFPkHtNtvhaE8zW9rN3nYDDM532Ycdjj583aHrFr6jnf7nBK1fnleLt7z-fH1fPNW5ppzLXKdoGDMGODSskpUwlSG80RVQISRIY6RhDdGiLEByAq0mRVWWRHBMqAE2QQ-Xu33wPwcbB7Xzh9Cll4rRispSYkFTi15aOvgYg21VH9wewq8iWJ11qYsuddKlzrrYHxiFYEQ |
| Cites_doi | 10.1109/CVPR.2015.7298965 10.1109/ISSCC.2005.1494019 10.1109/ICCV48922.2021.00061 10.1038/s41592-020-01008-z 10.1109/ICCV48922.2021.00009 10.1016/j.media.2020.101821 10.1016/j.media.2024.103280 10.1109/TIM.2022.3178991 10.1109/ACCESS.2024.3451304 10.1007/s10278-019-00227-x 10.1109/ICCV51070.2023.00548 10.1109/TPAMI.1986.4767769 10.1109/WACV56688.2023.00614 10.1186/s12859-023-05196-1 10.1016/j.compbiomed.2024.108284 10.1109/TMI.2013.2290491 10.1109/ITME.2018.00080 10.1007/978-3-030-00889-5_1 10.1016/j.media.2023.102802 10.1016/j.compag.2022.107297 10.2352/J.ImagingSci.Technol.2020.64.2.020508 10.1109/TMI.2013.2284099 10.1016/j.media.2023.102762 10.3389/fbioe.2024.1398237 10.1002/mp.14676 10.1007/978-3-319-24574-4_28 10.1109/TMI.2018.2791721 10.1101/2020.05.20.20100362 10.1007/978-3-031-25066-8_9 10.1109/SCT.1988.5265 10.1016/j.jksuci.2023.02.012 |
| ContentType | Journal Article |
| Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
| CorporateAuthor | Editorial Office |
| CorporateAuthor_xml | – name: Editorial Office |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.20965/jaciii.2025.p1319 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 1328 |
| ExternalDocumentID | 10_20965_jaciii_2025_p1319 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2449-cc24b33dda4ab37978d7d14bc7a2889a9dd9d3b1c865a941afc15766184012da3 |
| IEDL.DBID | P5Z |
| ISSN | 1343-0130 |
| IngestDate | Thu Nov 20 00:30:52 EST 2025 Thu Nov 27 00:51:19 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2449-cc24b33dda4ab37978d7d14bc7a2889a9dd9d3b1c865a941afc15766184012da3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0001-5128-5988 0009-0008-6472-1532 0000-0003-4554-6018 0000-0003-1636-7416 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p1319 |
| PQID | 3272969082 |
| PQPubID | 4911628 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_3272969082 crossref_primary_10_20965_jaciii_2025_p1319 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-20 |
| PublicationDateYYYYMMDD | 2025-11-20 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2025 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2025.p1319-24 key-10.20965/jaciii.2025.p1319-23 key-10.20965/jaciii.2025.p1319-22 key-10.20965/jaciii.2025.p1319-21 key-10.20965/jaciii.2025.p1319-20 key-10.20965/jaciii.2025.p1319-41 key-10.20965/jaciii.2025.p1319-40 key-10.20965/jaciii.2025.p1319-29 key-10.20965/jaciii.2025.p1319-28 key-10.20965/jaciii.2025.p1319-27 key-10.20965/jaciii.2025.p1319-26 key-10.20965/jaciii.2025.p1319-25 key-10.20965/jaciii.2025.p1319-13 key-10.20965/jaciii.2025.p1319-35 key-10.20965/jaciii.2025.p1319-12 key-10.20965/jaciii.2025.p1319-34 key-10.20965/jaciii.2025.p1319-11 key-10.20965/jaciii.2025.p1319-33 key-10.20965/jaciii.2025.p1319-10 key-10.20965/jaciii.2025.p1319-32 key-10.20965/jaciii.2025.p1319-4 key-10.20965/jaciii.2025.p1319-31 key-10.20965/jaciii.2025.p1319-3 key-10.20965/jaciii.2025.p1319-30 key-10.20965/jaciii.2025.p1319-2 key-10.20965/jaciii.2025.p1319-1 key-10.20965/jaciii.2025.p1319-19 key-10.20965/jaciii.2025.p1319-18 key-10.20965/jaciii.2025.p1319-17 key-10.20965/jaciii.2025.p1319-39 key-10.20965/jaciii.2025.p1319-16 key-10.20965/jaciii.2025.p1319-38 key-10.20965/jaciii.2025.p1319-15 key-10.20965/jaciii.2025.p1319-37 key-10.20965/jaciii.2025.p1319-14 key-10.20965/jaciii.2025.p1319-36 key-10.20965/jaciii.2025.p1319-8 key-10.20965/jaciii.2025.p1319-7 key-10.20965/jaciii.2025.p1319-6 key-10.20965/jaciii.2025.p1319-5 key-10.20965/jaciii.2025.p1319-9 |
| References_xml | – ident: key-10.20965/jaciii.2025.p1319-7 doi: 10.1109/CVPR.2015.7298965 – ident: key-10.20965/jaciii.2025.p1319-24 doi: 10.1109/ISSCC.2005.1494019 – ident: key-10.20965/jaciii.2025.p1319-29 doi: 10.1109/ICCV48922.2021.00061 – ident: key-10.20965/jaciii.2025.p1319-11 doi: 10.1038/s41592-020-01008-z – ident: key-10.20965/jaciii.2025.p1319-32 doi: 10.1109/ICCV48922.2021.00009 – ident: key-10.20965/jaciii.2025.p1319-2 doi: 10.1016/j.media.2020.101821 – ident: key-10.20965/jaciii.2025.p1319-27 – ident: key-10.20965/jaciii.2025.p1319-9 – ident: key-10.20965/jaciii.2025.p1319-22 doi: 10.1016/j.media.2024.103280 – ident: key-10.20965/jaciii.2025.p1319-41 – ident: key-10.20965/jaciii.2025.p1319-17 doi: 10.1109/TIM.2022.3178991 – ident: key-10.20965/jaciii.2025.p1319-15 doi: 10.1109/ACCESS.2024.3451304 – ident: key-10.20965/jaciii.2025.p1319-5 doi: 10.1007/s10278-019-00227-x – ident: key-10.20965/jaciii.2025.p1319-21 doi: 10.1109/ICCV51070.2023.00548 – ident: key-10.20965/jaciii.2025.p1319-23 doi: 10.1109/TPAMI.1986.4767769 – ident: key-10.20965/jaciii.2025.p1319-39 doi: 10.1109/WACV56688.2023.00614 – ident: key-10.20965/jaciii.2025.p1319-19 doi: 10.1186/s12859-023-05196-1 – ident: key-10.20965/jaciii.2025.p1319-26 doi: 10.1016/j.compbiomed.2024.108284 – ident: key-10.20965/jaciii.2025.p1319-36 doi: 10.1109/TMI.2013.2290491 – ident: key-10.20965/jaciii.2025.p1319-37 doi: 10.1109/ITME.2018.00080 – ident: key-10.20965/jaciii.2025.p1319-31 – ident: key-10.20965/jaciii.2025.p1319-12 – ident: key-10.20965/jaciii.2025.p1319-14 – ident: key-10.20965/jaciii.2025.p1319-10 doi: 10.1007/978-3-030-00889-5_1 – ident: key-10.20965/jaciii.2025.p1319-16 doi: 10.1016/j.media.2023.102802 – ident: key-10.20965/jaciii.2025.p1319-20 doi: 10.1016/j.compag.2022.107297 – ident: key-10.20965/jaciii.2025.p1319-28 – ident: key-10.20965/jaciii.2025.p1319-1 doi: 10.2352/J.ImagingSci.Technol.2020.64.2.020508 – ident: key-10.20965/jaciii.2025.p1319-35 doi: 10.1109/TMI.2013.2284099 – ident: key-10.20965/jaciii.2025.p1319-3 doi: 10.1016/j.media.2023.102762 – ident: key-10.20965/jaciii.2025.p1319-18 doi: 10.3389/fbioe.2024.1398237 – ident: key-10.20965/jaciii.2025.p1319-34 doi: 10.1002/mp.14676 – ident: key-10.20965/jaciii.2025.p1319-8 doi: 10.1007/978-3-319-24574-4_28 – ident: key-10.20965/jaciii.2025.p1319-4 doi: 10.1109/TMI.2018.2791721 – ident: key-10.20965/jaciii.2025.p1319-33 doi: 10.1101/2020.05.20.20100362 – ident: key-10.20965/jaciii.2025.p1319-40 doi: 10.1007/978-3-031-25066-8_9 – ident: key-10.20965/jaciii.2025.p1319-6 doi: 10.1109/SCT.1988.5265 – ident: key-10.20965/jaciii.2025.p1319-38 – ident: key-10.20965/jaciii.2025.p1319-13 – ident: key-10.20965/jaciii.2025.p1319-30 – ident: key-10.20965/jaciii.2025.p1319-25 doi: 10.1016/j.jksuci.2023.02.012 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.3409328 |
| Snippet | The widespread development and application of embedded medical devices necessitate the corresponding research in lightweight, energy-efficient models. Although... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1319 |
| SubjectTerms | Artificial neural networks Bias Efficiency Feature extraction Machine learning Medical devices Medical electronics Medical imaging Metric space Parameters Visual tasks |
| Title | Linear Transformer Based U-Shaped Lightweight Segmentation Network |
| URI | https://www.proquest.com/docview/3272969082 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA66efDi_InTOXrwJnFNk7XNSZxsCEoZboPhpaRJ5w-wq9vUf9_32pTpxYuXthAoJe_lve9L895HyLmP1VPS1RSgvwsEJVVU-qmhvvGVguAYKFGKTQRRFE6ncmg33Jb2WGUVE4tAbeYa98g73AMY6KNA91X-TlE1Cv-uWgmNTVLHLgko3TDsPlb-1AUqAAiBrfdcAKu4ouRgAo8Rcbeso_GwB0rnVWls6OABDLjMGcfmOz9z1e9QXeSfQeO_X75LdizydK5LV9kjG2m2TxqVqoNjF_kB6QE9Bfd3xhWkhcEe5DrjTOjoWeXwcI-M_qvYVHVG6dObrV_KnKg8VH5IJoP--OaWWqUFqiG9S6rhlnBujBIq4QEwSxMYJhIdKC8MpZLGSMMTpkO_q6RgaqYZEBUUi4EEZxQ_IrVsnqXHxJnNBCA0oTxfI3eTic8SOWMYG1zFZdIkF9WcxnnZUCMGIlJYIC4tEKMF4sICTdKq5jS2i2sZryf05O_hU7KNr8LSQc9tkdpq8ZGekS39uXpZLtqk3utHw4d2QcPhehfQduE_32Ecx5M |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LS8NAEB7qA_TiW6xWzUFPsjbJrkn2IOKrKK1FsEJvcbOb-ADb2laLf8rf6EweVC_eevCUwMKS5Nud-b7JzgzAnkfZU9LWDKm_jQIlVkx6sWGe8ZRC4-grkTWb8JvNoN2WtyX4KnJh6FhlYRNTQ226mmLkVe4iDfSoQfdJ741R1yj6u1q00MiWRT3-HKFkGxxfXyC--65bu2ydX7G8qwDT6Mok03iJODdGCRVxH1WU8Y0jIu0rNwikksZIwyNHB96RksJRiXaQlFNjFDTmRnGcdwpmBA982ld1nxXr9wilBzISZxzjQW5ki0zzCTq2xO0sb8elmivVF6WpgISLtOOw53Aq9vPTN_52Dam_qy3-ty-1BAs5s7ZOs62wDKW4swKLRdcKKzdiq3CG8hufzmoVlB0Hz9CXG-ue3T2pHt40KGIxSoPG1l38-JrnZ3WsZnZofg3uJ_Im6zDd6XbiDbCSRCADFcr1NGlTGXlOJBOHbJ-tuIzKcFBgGPaygiEhCq0U8TBDPCTEwxTxMlQKDMPceAzCMYCbfw_vwtxV66YRNq6b9S2Yp2kpTdK1KzA97L_H2zCrP4bPg_5Ouk4teJg03N9-xCBi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Linear+Transformer+Based+U-Shaped+Lightweight+Segmentation+Network&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=He%2C+Hongli&rft.au=Sun%2C+Changhao&rft.au=Wang%2C+Zhaoyuan&rft.au=Dan%2C+Yongping&rft.date=2025-11-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=6&rft.spage=1319&rft.epage=1328&rft_id=info:doi/10.20965%2Fjaciii.2025.p1319&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1319 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |