Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder

Advances in maritime instrumentation and measurement (I&M), particularly through the widespread adoption of automatic identification system (AIS), have significantly accelerated the development of intelligent situational awareness systems (ISAS). As a critical component of ISAS, cooperative navi...

Full description

Saved in:
Bibliographic Details
Published in:Reliability engineering & system safety Vol. 267; p. 111885
Main Authors: Jiang, Junhao, Zuo, Yi, Li, Zhiyuan
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.03.2026
Subjects:
ISSN:0951-8320
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Advances in maritime instrumentation and measurement (I&M), particularly through the widespread adoption of automatic identification system (AIS), have significantly accelerated the development of intelligent situational awareness systems (ISAS). As a critical component of ISAS, cooperative navigation demands greater accuracy and reliability in vessel trajectory prediction. Nevertheless, challenges arising from complex inter-vessel interactions and implicit intention inference expose limitations in modeling explicit and implicit relationships and ensuring the robustness of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN) to learn and predict the future vessel trajectories. The CIE-MGCN is composed of three primary components: Interaction Extractor, Intention Constructor, and Trajectory Generator. In Interaction Extractor, we designed the social-community extractor (SCE) to construct diverse interaction graphs that capture both cooperative and adversarial relationships among vessel trajectories, and the multi-modal transformer (MMT) to fuse explicit interaction features across various modalities. In Intention Constructor, we introduce a conditional variational autoencoder (CVAE)-based approach to infer implicit relationships and capture potential future behavioral variations and multi-modal probability distributions of future trajectories are produced by Trajectory Generator. Extensive experiments on real-world navigation data show that CIE-MGCN outperforms state-of-the-art models in accuracy and robustness, owing to its strong reasoning and learning capabilities. These reliable predictions further support cooperative navigation within ISAS by enhancing coordination and decision-making among multi-vessel. •This study proposes a model (CIE-MGCN) to enhance maritime situational awareness.•The CIE-MGCN models the dynamic relationships among vessel trajectories.•The CIE-MGCN models the intention of future navigational trajectories.•The CIE-MGCN was evaluated on different datasets and produced reliable results.
AbstractList Advances in maritime instrumentation and measurement (I&M), particularly through the widespread adoption of automatic identification system (AIS), have significantly accelerated the development of intelligent situational awareness systems (ISAS). As a critical component of ISAS, cooperative navigation demands greater accuracy and reliability in vessel trajectory prediction. Nevertheless, challenges arising from complex inter-vessel interactions and implicit intention inference expose limitations in modeling explicit and implicit relationships and ensuring the robustness of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN) to learn and predict the future vessel trajectories. The CIE-MGCN is composed of three primary components: Interaction Extractor, Intention Constructor, and Trajectory Generator. In Interaction Extractor, we designed the social-community extractor (SCE) to construct diverse interaction graphs that capture both cooperative and adversarial relationships among vessel trajectories, and the multi-modal transformer (MMT) to fuse explicit interaction features across various modalities. In Intention Constructor, we introduce a conditional variational autoencoder (CVAE)-based approach to infer implicit relationships and capture potential future behavioral variations and multi-modal probability distributions of future trajectories are produced by Trajectory Generator. Extensive experiments on real-world navigation data show that CIE-MGCN outperforms state-of-the-art models in accuracy and robustness, owing to its strong reasoning and learning capabilities. These reliable predictions further support cooperative navigation within ISAS by enhancing coordination and decision-making among multi-vessel. •This study proposes a model (CIE-MGCN) to enhance maritime situational awareness.•The CIE-MGCN models the dynamic relationships among vessel trajectories.•The CIE-MGCN models the intention of future navigational trajectories.•The CIE-MGCN was evaluated on different datasets and produced reliable results.
Advances in maritime instrumentation and measurement (I&M), particularly through the widespread adoption of automatic identification system (AIS), have significantly accelerated the development of intelligent situational awareness systems (ISAS). As a critical component of ISAS, cooperative navigation demands greater accuracy and reliability in vessel trajectory prediction. Nevertheless, challenges arising from complex inter-vessel interactions and implicit intention inference expose limitations in modeling explicit and implicit relationships and ensuring the robustness of trajectory prediction. To address these challenges, we propose a cooperative intention enhance multi-modal graph convolutional network (CIE-MGCN) to learn and predict the future vessel trajectories. The CIE-MGCN is composed of three primary components: Interaction Extractor, Intention Constructor, and Trajectory Generator. In Interaction Extractor, we designed the social-community extractor (SCE) to construct diverse interaction graphs that capture both cooperative and adversarial relationships among vessel trajectories, and the multi-modal transformer (MMT) to fuse explicit interaction features across various modalities. In Intention Constructor, we introduce a conditional variational autoencoder (CVAE)-based approach to infer implicit relationships and capture potential future behavioral variations and multi-modal probability distributions of future trajectories are produced by Trajectory Generator. Extensive experiments on real-world navigation data show that CIE-MGCN outperforms state-of-the-art models in accuracy and robustness, owing to its strong reasoning and learning capabilities. These reliable predictions further support cooperative navigation within ISAS by enhancing coordination and decision-making among multi-vessel.
ArticleNumber 111885
Author Zuo, Yi
Li, Zhiyuan
Jiang, Junhao
Author_xml – sequence: 1
  givenname: Junhao
  orcidid: 0000-0003-3425-7966
  surname: Jiang
  fullname: Jiang, Junhao
  email: jiangjunhao@dlmu.edu.cn
  organization: Navigation College, Dalian Maritime University, Dalian, 116026, Liaoning, China
– sequence: 2
  givenname: Yi
  orcidid: 0000-0002-4580-6855
  surname: Zuo
  fullname: Zuo, Yi
  email: zuo@dlmu.edu.cn
  organization: Navigation College, Dalian Maritime University, Dalian, 116026, Liaoning, China
– sequence: 3
  givenname: Zhiyuan
  orcidid: 0000-0001-6478-1027
  surname: Li
  fullname: Li, Zhiyuan
  email: zhiyuan.li@chalmers.se
  organization: Department of Mechanics and Maritime Sciences, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
BackLink https://research.chalmers.se/publication/549377$$DView record from Swedish Publication Index (Chalmers tekniska högskola)
BookMark eNp9kctuFDEQRb0IUp4_wMo_0IMf7X5IbFCUAFJQFsDactvljIceu1Xu7iifwt_iZkYsWbnkqntKde81uYgpAiHvOdtxxpsPhx1CzjvBhNpxzrtOXZAr1itedVKwS3Kd84ExVveqvSK_vy3jHKpjcmakL2imPbUprmlc5pBi-Yswvyb8RX1CuhYujHRGcwA7J3yjE4ILdhulg8ngaClsShOgmcMKNMQZ4t82xL2JFuiSQ3zZdrhw3rAaDOZcm2VOEG1ygLfknTdjhrvze0N-Pj78uP9SPT1__nr_6amyoq7bqvXSD5JB53uoneoa2Qnw3jNuGsmbhntRW-ubMtaJobVD39SWKTco26iBc3lDvp-4-RWmZdAThqPBN51M0MVIMGj32u7NeATMOoPmvld1B063XvW6HqTQxrpeg6wlF072kreFKk5UiylnBP-Py5neYtKHjZ71FpM-xVREH08iKPeuAVBnG4odxWMshmuXwv_kfwBchaW9
Cites_doi 10.1016/j.engappai.2023.107625
10.1016/j.engappai.2024.107936
10.1016/j.oceaneng.2023.116159
10.1109/TITS.2022.3192574
10.1109/TSMC.2024.3458469
10.1109/LRA.2020.3043163
10.1109/TII.2023.3302304
10.1016/j.ress.2021.108061
10.1016/j.ress.2025.111542
10.1109/TIM.2024.3374306
10.1016/j.oceaneng.2020.107478
10.1109/TII.2022.3165886
10.1016/j.ress.2024.110463
10.1016/j.ress.2025.111615
10.1007/s10489-024-06079-5
10.1109/TVT.2024.3521393
10.1109/LRA.2020.2969925
10.1016/j.oceaneng.2025.121135
10.1016/j.oceaneng.2023.114916
10.1016/j.oceaneng.2024.117431
10.1016/j.ress.2025.111712
10.1109/TCSVT.2023.3307442
10.1109/TIV.2024.3401864
10.1016/j.ress.2025.111373
10.1016/j.tre.2024.103748
10.1109/TIM.2024.3488159
10.1016/j.engappai.2023.106776
10.1109/TAES.2021.3096873
10.1109/TITS.2023.3320861
10.1016/j.neucom.2013.09.043
10.1016/j.tre.2022.102997
10.1016/j.ress.2025.111150
10.1080/20464177.2019.1665258
10.1016/j.ress.2023.109636
10.1109/JPROC.2022.3194445
10.1109/TITS.2024.3465234
10.1016/S0029-8018(01)00023-3
10.1016/j.tre.2024.103770
10.1016/j.oceaneng.2020.107994
10.1109/TITS.2021.3127223
10.1109/COMST.2020.3015694
10.1109/TGCN.2022.3193849
10.1109/TKDE.2024.3390765
10.1109/TNSE.2022.3140529
10.1016/j.apor.2023.103592
10.1016/j.oceaneng.2023.115886
10.1016/j.tre.2025.104315
10.1016/j.eswa.2024.125550
10.2112/SI95-230.1
10.1109/TKDE.2023.3329676
10.1109/TKDE.2025.3531770
10.3390/jmse9030254
10.1016/j.oceaneng.2024.118303
10.1016/j.ress.2024.110547
10.1016/j.patcog.2023.109997
10.1016/j.oceaneng.2025.120368
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
ADTPV
AOWAS
F1S
DOI 10.1016/j.ress.2025.111885
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Chalmers tekniska högskola
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID oai_research_chalmers_se_1f9548ed_7f59_4b32_acd9_e34312d39317
10_1016_j_ress_2025_111885
S0951832025010853
GroupedDBID --K
--M
.~1
0R~
123
1B1
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9DU
9JN
9JO
AABNK
AAEDT
AAEDW
AAFJI
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABEFU
ABFNM
ABJNI
ABMAC
ABMMH
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOMHK
APXCP
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SSB
SSO
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
ZY4
~G-
~HD
AAYXX
CITATION
ADTPV
AOWAS
F1S
ID FETCH-LOGICAL-c2447-7f3fb30e8f9e4d586382efff01a631661f24ccf6f3f82b7cb964c05db5c65b113
ISSN 0951-8320
IngestDate Tue Nov 25 03:33:46 EST 2025
Thu Nov 27 00:41:40 EST 2025
Sat Nov 29 17:05:10 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Conditional variational autoencoder
Trajectory prediction
Graph convolutional network
Intelligent situational awareness systems
Cooperative intention constructor
Multi-modal interaction extractor
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2447-7f3fb30e8f9e4d586382efff01a631661f24ccf6f3f82b7cb964c05db5c65b113
ORCID 0000-0001-6478-1027
0000-0002-4580-6855
0000-0003-3425-7966
ParticipantIDs swepub_primary_oai_research_chalmers_se_1f9548ed_7f59_4b32_acd9_e34312d39317
crossref_primary_10_1016_j_ress_2025_111885
elsevier_sciencedirect_doi_10_1016_j_ress_2025_111885
PublicationCentury 2000
PublicationDate 2026-03-01
PublicationDateYYYYMMDD 2026-03-01
PublicationDate_xml – month: 03
  year: 2026
  text: 2026-03-01
  day: 01
PublicationDecade 2020
PublicationTitle Reliability engineering & system safety
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Liu, Gong, Chen, Han, Wu (b45) 2023; 287
Ma, Inala, Jayaraman, Bastani (b60) 2021
Jiang, Zuo, Xiao, Zhang, Li (b47) 2024; 25
Alam, Spadon, Etemad, Torgo, Milios (b24) 2024; 308
Xue, Wang, Xia, Guo (b33) 2024; 300
Yuan, Weng, Ou, Kitani (b65) 2021
Shin, Kim, Lee, In, Hansen, Yoon (b28) 2024; 132
Li, Guo, Chen, Chen, Mou (b30) 2026; 265
Ivanovic, Leung, Schmerling, Pavone (b57) 2021; 6
Zhang, Liu, Hu, Ma (b18) 2019
Wang, Zhang, You (b4) 2020; 22
Liu, Li, Wang, Sammut, Yao (b53) 2024; 36
Murray, Perera (b23) 2020; 209
Ma, Lian, Du, Jiang, BahooToroody, Zhang (b29) 2026; 265
Gupta, Johnson, Fei-Fei, Savarese, Alahi (b61) 2018
Forti, d’ Afflisio, Braca, Millefiori, Carniel, Willett (b5) 2022; 110
Liu, Zheng, Liang (b48) 2024; 129
Li, Yang, Chen, Jin (b37) 2024; 146
Liu, Guedes Soares (b2) 2026; 266
Zhao, Fu (b55) 2022; 23
Zhang, Fu, Xiao, Xu, Qin (b9) 2022; 23
Gao, Zhu, Yan, Soares (b8) 2024; 241
Huang, Bi, Li, Mao, Wang (b64) 2019
Zhang, Liu, Chen, Gong, Liu, Wu (b39) 2024; 9
Mehri, Alesheikh, Basiri (b25) 2023; 282
Wang, Hu, Song, Li (b62) 2024; 36
Yin, Zou, Xu, Wang (b21) 2014; 129
Tang, Yin, and (b63) 2022; 21
Jiang, Zuo (b12) 2025; 262
Gao, Zhu, Yan, Soares (b31) 2024; 241
Zhao, Yan, Zhou, Chen, Wu, Wang (b43) 2023; 289
Schöller, Aravantinos, Lay, Knoll (b15) 2020; 5
Wang, Wang, Ding, Yu (b49) 2024; 252
Li, Xing, Jiao, Yuen, Gao, Li, Matthews, Yang (b32) 2024; 192
Wang, Zuo, Zhao, Jia, Kuang (b26) 2025; 55
Wang, Xu, Xia, Zou, Soares (b20) 2020; 216
Zhao, Zuo, Zhang, Li, Chen (b35) 2025; 321
Hexeberg, Flåten, Eriksen, Brekke (b17) 2017
Wang, Wang, Ding, Yu (b13) 2024; 252
Capobianco, Millefiori, Forti, Braca, Willett (b27) 2021; 57
Peng, Zhang, Shi, Li, Zheng (b66) 2024; 34
Elsisi, Yu, Lai, Su (b1) 2024; 73
Mohamed, Qian, Elhoseiny, Claudel (b56) 2020
Gong, Li, Jiao, Yang (b50) 2025; 203
Liu, Hu, Liang, Li, Liu, Yang (b34) 2023; 136
Liu, Liang, Nie, Yuan, Xiong, Yu, Guizani (b46) 2022; 18
Han, Zhu, Zhang (b11) 2024; 20
Mo, Xing, Lv (b38) 2024; 191
Wu, Wang, Zhou, Duan, Hua, Tang (b59) 2023; 37
Zhang, Yuan, Fan, Song, Shibasaki (b44) 2025; 37
Rong, Teixeira, Guedes Soares (b3) 2022; 217
Ju, Cao, Chen, Liu, Pei, Mumtaz, Dong, Guizani (b6) 2024; 25
Luo, Zhang (b16) 2020
Zhu, Cao, Zheng, Huang, Chen, Wen (b41) 2025; 329
Yan, Yang, Wu, Lin (b42) 2023; 170
Zhu, Han, Wang, Skulstad, Zhang, Li (b19) 2025; 55
Guo, Yu, Konstantin, Mumtaz, Wei, Shi, Rodrigues (b40) 2023; 7
Jia, Ma (b51) 2023; 126
Yang, Yang, Lu (b52) 2025; 261
Zhang, Gu, Ma, Wu, Song (b54) 2025; 264
Liu, Liang, Nie, Lim, Zhang, Guizani (b36) 2022; 9
Zhang, Lin, Chen, Cai, Duan (b7) 2025; 74
Sutulo, Moreira, Guedes Soares (b14) 2002; 29
Guo, Liu, Meng, Li, Chen (b58) 2024; 73
Volkova, Balykina, Bespalov (b22) 2021; 9
Fan, Shi, Weng, Yang (b10) 2025; 253
Huang (10.1016/j.ress.2025.111885_b64) 2019
Sutulo (10.1016/j.ress.2025.111885_b14) 2002; 29
Zhang (10.1016/j.ress.2025.111885_b18) 2019
Zhu (10.1016/j.ress.2025.111885_b19) 2025; 55
Jiang (10.1016/j.ress.2025.111885_b47) 2024; 25
Li (10.1016/j.ress.2025.111885_b30) 2026; 265
Zhang (10.1016/j.ress.2025.111885_b54) 2025; 264
Zhao (10.1016/j.ress.2025.111885_b43) 2023; 289
Wang (10.1016/j.ress.2025.111885_b49) 2024; 252
Zhang (10.1016/j.ress.2025.111885_b7) 2025; 74
Gao (10.1016/j.ress.2025.111885_b31) 2024; 241
Wang (10.1016/j.ress.2025.111885_b13) 2024; 252
Schöller (10.1016/j.ress.2025.111885_b15) 2020; 5
Yin (10.1016/j.ress.2025.111885_b21) 2014; 129
Ivanovic (10.1016/j.ress.2025.111885_b57) 2021; 6
Liu (10.1016/j.ress.2025.111885_b53) 2024; 36
Zhao (10.1016/j.ress.2025.111885_b55) 2022; 23
Ma (10.1016/j.ress.2025.111885_b29) 2026; 265
Luo (10.1016/j.ress.2025.111885_b16) 2020
Jia (10.1016/j.ress.2025.111885_b51) 2023; 126
Forti (10.1016/j.ress.2025.111885_b5) 2022; 110
Li (10.1016/j.ress.2025.111885_b37) 2024; 146
Yang (10.1016/j.ress.2025.111885_b52) 2025; 261
Shin (10.1016/j.ress.2025.111885_b28) 2024; 132
Zhang (10.1016/j.ress.2025.111885_b45) 2023; 287
Wang (10.1016/j.ress.2025.111885_b62) 2024; 36
Ma (10.1016/j.ress.2025.111885_b60) 2021
Hexeberg (10.1016/j.ress.2025.111885_b17) 2017
Capobianco (10.1016/j.ress.2025.111885_b27) 2021; 57
Mehri (10.1016/j.ress.2025.111885_b25) 2023; 282
Liu (10.1016/j.ress.2025.111885_b36) 2022; 9
Yuan (10.1016/j.ress.2025.111885_b65) 2021
Zhang (10.1016/j.ress.2025.111885_b9) 2022; 23
Alam (10.1016/j.ress.2025.111885_b24) 2024; 308
Zhu (10.1016/j.ress.2025.111885_b41) 2025; 329
Zhang (10.1016/j.ress.2025.111885_b44) 2025; 37
Zhao (10.1016/j.ress.2025.111885_b35) 2025; 321
Mo (10.1016/j.ress.2025.111885_b38) 2024; 191
Murray (10.1016/j.ress.2025.111885_b23) 2020; 209
Tang (10.1016/j.ress.2025.111885_b63) 2022; 21
Peng (10.1016/j.ress.2025.111885_b66) 2024; 34
Wang (10.1016/j.ress.2025.111885_b4) 2020; 22
Yan (10.1016/j.ress.2025.111885_b42) 2023; 170
Liu (10.1016/j.ress.2025.111885_b34) 2023; 136
Liu (10.1016/j.ress.2025.111885_b48) 2024; 129
Wang (10.1016/j.ress.2025.111885_b20) 2020; 216
Liu (10.1016/j.ress.2025.111885_b46) 2022; 18
Guo (10.1016/j.ress.2025.111885_b58) 2024; 73
Zhang (10.1016/j.ress.2025.111885_b39) 2024; 9
Guo (10.1016/j.ress.2025.111885_b40) 2023; 7
Wu (10.1016/j.ress.2025.111885_b59) 2023; 37
Xue (10.1016/j.ress.2025.111885_b33) 2024; 300
Gupta (10.1016/j.ress.2025.111885_b61) 2018
Elsisi (10.1016/j.ress.2025.111885_b1) 2024; 73
Fan (10.1016/j.ress.2025.111885_b10) 2025; 253
Rong (10.1016/j.ress.2025.111885_b3) 2022; 217
Li (10.1016/j.ress.2025.111885_b32) 2024; 192
Liu (10.1016/j.ress.2025.111885_b2) 2026; 266
Ju (10.1016/j.ress.2025.111885_b6) 2024; 25
Mohamed (10.1016/j.ress.2025.111885_b56) 2020
Wang (10.1016/j.ress.2025.111885_b26) 2025; 55
Gao (10.1016/j.ress.2025.111885_b8) 2024; 241
Jiang (10.1016/j.ress.2025.111885_b12) 2025; 262
Han (10.1016/j.ress.2025.111885_b11) 2024; 20
Volkova (10.1016/j.ress.2025.111885_b22) 2021; 9
Gong (10.1016/j.ress.2025.111885_b50) 2025; 203
References_xml – volume: 18
  start-page: 7977
  year: 2022
  end-page: 7987
  ident: b46
  article-title: STMGCN: Mobile edge computing-empowered vessel trajectory prediction using spatio-temporal multigraph convolutional network
  publication-title: IEEE Trans Ind Inform
– volume: 265
  year: 2026
  ident: b30
  article-title: A stacking-based ensemble learning model for intelligent ship trajectory interpolation
  publication-title: Reliab Eng Syst Saf
– volume: 9
  start-page: 7765
  year: 2024
  end-page: 7780
  ident: b39
  article-title: Learning dynamic interactions and long-term patterns with spatio-temporal graphs for multi-vessel trajectory prediction
  publication-title: IEEE Trans Intell Veh
– volume: 216
  year: 2020
  ident: b20
  article-title: Kernel-based support vector regression for nonparametric modeling of ship maneuvering motion
  publication-title: Ocean Eng
– volume: 57
  start-page: 4329
  year: 2021
  end-page: 4346
  ident: b27
  article-title: Deep learning methods for vessel trajectory prediction based on recurrent neural networks
  publication-title: IEEE Trans Aerosp Electron Syst
– volume: 287
  year: 2023
  ident: b45
  article-title: Trajectory prediction of seagoing ships in dynamic traffic scenes via a gated spatio-temporal graph aggregation network
  publication-title: Ocean Eng
– start-page: 9793
  year: 2021
  end-page: 9803
  ident: b65
  article-title: AgentFormer: Agent-aware transformers for socio-temporal multi-agent forecasting
  publication-title: 2021 IEEE/CVF international conference on computer vision
– volume: 23
  start-page: 19980
  year: 2022
  end-page: 19998
  ident: b9
  article-title: Vessel trajectory prediction in maritime transportation: Current approaches and beyond
  publication-title: IEEE Trans Intell Transp Syst
– volume: 29
  start-page: 1
  year: 2002
  end-page: 19
  ident: b14
  article-title: Mathematical models for ship path prediction in manoeuvring simulation systems
  publication-title: Ocean Eng
– volume: 170
  year: 2023
  ident: b42
  article-title: A multi-view attention-based spatial-temporal network for airport arrival flow prediction
  publication-title: Transp Res Part E: Logist Transp Rev
– volume: 37
  start-page: 2875
  year: 2023
  end-page: 2882
  ident: b59
  article-title: Multi-stream representation learning for pedestrian trajectory prediction
  publication-title: Proc AAAI Conf Artif Intell
– volume: 25
  start-page: 2627
  year: 2024
  end-page: 2640
  ident: b6
  article-title: NOMA-assisted secure offloading for vehicular edge computing networks with asynchronous deep reinforcement learning
  publication-title: IEEE Trans Intell Transp Syst
– volume: 241
  year: 2024
  ident: b31
  article-title: Deep learning-based framework for regional risk assessment in a multi-ship encounter situation based on the transformer network
  publication-title: Reliab Eng Syst Saf
– volume: 129
  year: 2024
  ident: b48
  article-title: Spatio-temporal multi-graph transformer network for joint prediction of multiple vessel trajectories
  publication-title: Eng Appl Artif Intell
– volume: 136
  year: 2023
  ident: b34
  article-title: QSD-LSTM: Vessel trajectory prediction using long short-term memory with quaternion ship domain
  publication-title: Appl Ocean Res
– volume: 129
  start-page: 168
  year: 2014
  end-page: 174
  ident: b21
  article-title: Online ship roll motion prediction based on grey sequential extreme learning machine
  publication-title: Neurocomputing
– volume: 192
  year: 2024
  ident: b32
  article-title: Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems
  publication-title: Transp Res Part E: Logist Transp Rev
– start-page: 6271
  year: 2019
  end-page: 6280
  ident: b64
  article-title: STGAT: Modeling spatial-temporal interactions for human trajectory prediction
  publication-title: 2019 IEEE/CVF international conference on computer vision
– volume: 241
  year: 2024
  ident: b8
  article-title: Deep learning-based framework for regional risk assessment in a multi-ship encounter situation based on the transformer network
  publication-title: Reliab Eng Syst Saf
– start-page: 14412
  year: 2020
  end-page: 14420
  ident: b56
  article-title: Social-STGCNN: A social spatio-temporal graph convolutional neural network for human trajectory prediction
  publication-title: 2020 IEEE/CVF conference on computer vision and pattern recognition
– volume: 266
  year: 2026
  ident: b2
  article-title: Ship abnormal behaviour detection based on AIS data at the approach to ports
  publication-title: Reliab Eng Syst Saf
– volume: 282
  year: 2023
  ident: b25
  article-title: A context-aware approach for vessels’ trajectory prediction
  publication-title: Ocean Eng
– volume: 73
  start-page: 1
  year: 2024
  end-page: 11
  ident: b1
  article-title: A drone-assisted deep learning-based IoT system for monitoring ship emissions in ports considering adversarial attacks
  publication-title: IEEE Trans Instrum Meas
– volume: 300
  year: 2024
  ident: b33
  article-title: G-Trans: A hierarchical approach to vessel trajectory prediction with GRU-based transformer
  publication-title: Ocean Eng
– volume: 25
  start-page: 21367
  year: 2024
  end-page: 21379
  ident: b47
  article-title: STMGF-Net: A spatiotemporal multi-graph fusion network for vessel trajectory forecasting in intelligent maritime navigation
  publication-title: IEEE Trans Intell Transp Syst
– volume: 191
  year: 2024
  ident: b38
  article-title: Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction
  publication-title: Transp Res Part E: Logist Transp Rev
– volume: 36
  start-page: 5633
  year: 2024
  end-page: 5646
  ident: b53
  article-title: Attention-aware social graph transformer networks for stochastic trajectory prediction
  publication-title: IEEE Trans Knowl Data Eng
– volume: 203
  year: 2025
  ident: b50
  article-title: Uncertainty-aware ship trajectory prediction via spatio-temporal graph transformer
  publication-title: Transp Res Part E: Logist Transp Rev
– volume: 22
  start-page: 2550
  year: 2020
  end-page: 2585
  ident: b4
  article-title: Machine-type communication for maritime internet of things: A design
  publication-title: IEEE Commun Surv Tutor.
– volume: 55
  start-page: 289
  year: 2025
  ident: b26
  article-title: Enhancing short-term vessel trajectory prediction with clustering for heterogeneous and multi-modal movement patterns
  publication-title: Appl Intell
– start-page: 2913
  year: 2019
  end-page: 2918
  ident: b18
  article-title: Wavelet analysis based hidden Markov model for large ship trajectory prediction
  publication-title: 2019 Chinese control conference
– volume: 6
  start-page: 295
  year: 2021
  end-page: 302
  ident: b57
  article-title: Multimodal deep generative models for trajectory prediction: A conditional variational autoencoder approach
  publication-title: IEEE Robot Autom Lett
– start-page: 13279
  year: 2021
  end-page: 13288
  ident: b60
  article-title: Likelihood-based diverse sampling for trajectory forecasting
  publication-title: Proceedings of the IEEE/CVF international conference on computer vision
– volume: 329
  year: 2025
  ident: b41
  article-title: Predicting multi-port vessel traffic flow: An improved spatial-temporal graph neural network with uncertainty quantification
  publication-title: Ocean Eng
– volume: 37
  start-page: 1571
  year: 2025
  end-page: 1584
  ident: b44
  article-title: AISFuser: Encoding maritime graphical representations with temporal attribute modeling for vessel trajectory prediction
  publication-title: IEEE Trans Knowl Data Eng
– volume: 132
  year: 2024
  ident: b28
  article-title: Deep learning framework for vessel trajectory prediction using auxiliary tasks and convolutional networks
  publication-title: Eng Appl Artif Intell
– volume: 289
  year: 2023
  ident: b43
  article-title: A ship trajectory prediction method based on GAT and LSTM
  publication-title: Ocean Eng
– start-page: 2255
  year: 2018
  end-page: 2264
  ident: b61
  article-title: Social GAN: Socially acceptable trajectories with generative adversarial networks
  publication-title: 2018 IEEE/CVF conference on computer vision and pattern recognition
– volume: 146
  year: 2024
  ident: b37
  article-title: MFAN: Mixing feature attention network for trajectory prediction
  publication-title: Pattern Recognit
– volume: 73
  start-page: 1
  year: 2024
  end-page: 16
  ident: b58
  article-title: Goal-oriented pedestrian trajectory prediction considering spatial-temporal interactions
  publication-title: IEEE Trans Instrum Meas
– volume: 74
  start-page: 7928
  year: 2025
  end-page: 7939
  ident: b7
  article-title: Mobile edge deployment and resource management for maritime wireless networks
  publication-title: IEEE Trans Veh Technol
– volume: 209
  year: 2020
  ident: b23
  article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data
  publication-title: Ocean Eng
– volume: 321
  year: 2025
  ident: b35
  article-title: SNIINet: Trajectory prediction using ship navigation information interaction-aware neural network
  publication-title: Ocean Eng
– volume: 126
  year: 2023
  ident: b51
  article-title: Conditional temporal GAN for intent-aware vessel trajectory prediction in the precautionary area
  publication-title: Eng Appl Artif Intell
– volume: 252
  year: 2024
  ident: b13
  article-title: Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network
  publication-title: Reliab Eng Syst Saf
– volume: 261
  year: 2025
  ident: b52
  article-title: Enhancing risk perception by integrating ship interactions in multi-ship encounters: A graph-based learning method
  publication-title: Reliab Eng Syst Saf
– volume: 23
  start-page: 13745
  year: 2022
  end-page: 13757
  ident: b55
  article-title: A method for correcting the closest point of approach index during vessel encounters based on dimension data from AIS
  publication-title: IEEE Trans Intell Transp Syst
– volume: 55
  start-page: 96
  year: 2025
  end-page: 109
  ident: b19
  article-title: An AIS data-driven hybrid approach to ship trajectory prediction
  publication-title: IEEE Trans Syst Man Cybern: Syst
– volume: 252
  year: 2024
  ident: b49
  article-title: Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network
  publication-title: Reliab Eng Syst Saf
– volume: 20
  start-page: 3188
  year: 2024
  end-page: 3196
  ident: b11
  article-title: Interaction-aware short-term marine vessel trajectory prediction with deep generative models
  publication-title: IEEE Trans Ind Inform
– start-page: 1
  year: 2017
  end-page: 8
  ident: b17
  article-title: AIS-based vessel trajectory prediction
  publication-title: 2017 20th international conference on information fusion
– volume: 36
  start-page: 4304
  year: 2024
  end-page: 4316
  ident: b62
  article-title: Trajectory distribution aware graph convolutional network for trajectory prediction considering spatio-temporal interactions and scene information
  publication-title: IEEE Trans Knowl Data Eng
– volume: 253
  year: 2025
  ident: b10
  article-title: Letting losses be lessons: Human-machine cooperation in maritime transport
  publication-title: Reliab Eng Syst Saf
– volume: 308
  year: 2024
  ident: b24
  article-title: Enhancing short-term vessel trajectory prediction with clustering for heterogeneous and multi-modal movement patterns
  publication-title: Ocean Eng
– volume: 110
  start-page: 1532
  year: 2022
  end-page: 1537
  ident: b5
  article-title: Next-gen intelligent situational awareness systems for maritime surveillance and autonomous navigation [point of view]
  publication-title: Proc IEEE
– volume: 9
  year: 2021
  ident: b22
  article-title: Predicting ship trajectory based on neural networks using AIS data
  publication-title: J Mar Sci Eng
– volume: 7
  start-page: 1023
  year: 2023
  end-page: 1035
  ident: b40
  article-title: Deep collaborative intelligence-driven traffic forecasting in green internet of vehicles
  publication-title: IEEE Trans Green Commun Netw
– volume: 9
  start-page: 3080
  year: 2022
  end-page: 3094
  ident: b36
  article-title: Deep learning-powered vessel trajectory prediction for improving smart traffic services in maritime internet of things
  publication-title: IEEE Trans Netw Sci Eng
– start-page: 1183
  year: 2020
  end-page: 1188
  ident: b16
  article-title: Ship motion trajectory and prediction based on vector analysis
  publication-title: J Coast Res
– volume: 217
  year: 2022
  ident: b3
  article-title: Maritime traffic probabilistic prediction based on ship motion pattern extraction
  publication-title: Reliab Eng Syst Saf
– volume: 262
  year: 2025
  ident: b12
  article-title: STIA-DJANet: Spatial-temporal intention-aware vessel trajectory prediction based on dual-joint attention network for e-navigation
  publication-title: Expert Syst Appl
– volume: 264
  year: 2025
  ident: b54
  article-title: Modelling collision risk between container and fishing ships during cross encounter in a cordon area
  publication-title: Reliab Eng Syst Saf
– volume: 265
  year: 2026
  ident: b29
  article-title: A deep learning method to predict ship short-term trajectory for proactive maritime traffic management
  publication-title: Reliab Eng Syst Saf
– volume: 34
  start-page: 2318
  year: 2024
  end-page: 2331
  ident: b66
  article-title: MRGTraj: A novel non-autoregressive approach for human trajectory prediction
  publication-title: IEEE Trans Circuits Syst Video Technol
– volume: 21
  start-page: 136
  year: 2022
  end-page: 145
  ident: b63
  article-title: A model for vessel trajectory prediction based on long short-term memory neural network
  publication-title: J Mar Eng Technol
– volume: 5
  start-page: 1696
  year: 2020
  end-page: 1703
  ident: b15
  article-title: What the constant velocity model can teach us about pedestrian motion prediction
  publication-title: IEEE Robot Autom Lett
– volume: 129
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b48
  article-title: Spatio-temporal multi-graph transformer network for joint prediction of multiple vessel trajectories
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107625
– volume: 132
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b28
  article-title: Deep learning framework for vessel trajectory prediction using auxiliary tasks and convolutional networks
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2024.107936
– volume: 289
  year: 2023
  ident: 10.1016/j.ress.2025.111885_b43
  article-title: A ship trajectory prediction method based on GAT and LSTM
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.116159
– volume: 23
  start-page: 19980
  issue: 11
  year: 2022
  ident: 10.1016/j.ress.2025.111885_b9
  article-title: Vessel trajectory prediction in maritime transportation: Current approaches and beyond
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2022.3192574
– volume: 55
  start-page: 96
  issue: 1
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b19
  article-title: An AIS data-driven hybrid approach to ship trajectory prediction
  publication-title: IEEE Trans Syst Man Cybern: Syst
  doi: 10.1109/TSMC.2024.3458469
– volume: 6
  start-page: 295
  issue: 2
  year: 2021
  ident: 10.1016/j.ress.2025.111885_b57
  article-title: Multimodal deep generative models for trajectory prediction: A conditional variational autoencoder approach
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.3043163
– volume: 20
  start-page: 3188
  issue: 3
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b11
  article-title: Interaction-aware short-term marine vessel trajectory prediction with deep generative models
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2023.3302304
– volume: 217
  year: 2022
  ident: 10.1016/j.ress.2025.111885_b3
  article-title: Maritime traffic probabilistic prediction based on ship motion pattern extraction
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2021.108061
– volume: 265
  year: 2026
  ident: 10.1016/j.ress.2025.111885_b29
  article-title: A deep learning method to predict ship short-term trajectory for proactive maritime traffic management
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.111542
– start-page: 9793
  year: 2021
  ident: 10.1016/j.ress.2025.111885_b65
  article-title: AgentFormer: Agent-aware transformers for socio-temporal multi-agent forecasting
– volume: 73
  start-page: 1
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b1
  article-title: A drone-assisted deep learning-based IoT system for monitoring ship emissions in ports considering adversarial attacks
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2024.3374306
– volume: 209
  year: 2020
  ident: 10.1016/j.ress.2025.111885_b23
  article-title: A dual linear autoencoder approach for vessel trajectory prediction using historical AIS data
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.107478
– volume: 18
  start-page: 7977
  issue: 11
  year: 2022
  ident: 10.1016/j.ress.2025.111885_b46
  article-title: STMGCN: Mobile edge computing-empowered vessel trajectory prediction using spatio-temporal multigraph convolutional network
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2022.3165886
– volume: 252
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b13
  article-title: Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110463
– volume: 265
  year: 2026
  ident: 10.1016/j.ress.2025.111885_b30
  article-title: A stacking-based ensemble learning model for intelligent ship trajectory interpolation
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.111615
– volume: 55
  start-page: 289
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b26
  article-title: Enhancing short-term vessel trajectory prediction with clustering for heterogeneous and multi-modal movement patterns
  publication-title: Appl Intell
  doi: 10.1007/s10489-024-06079-5
– volume: 74
  start-page: 7928
  issue: 5
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b7
  article-title: Mobile edge deployment and resource management for maritime wireless networks
  publication-title: IEEE Trans Veh Technol
  doi: 10.1109/TVT.2024.3521393
– volume: 5
  start-page: 1696
  issue: 2
  year: 2020
  ident: 10.1016/j.ress.2025.111885_b15
  article-title: What the constant velocity model can teach us about pedestrian motion prediction
  publication-title: IEEE Robot Autom Lett
  doi: 10.1109/LRA.2020.2969925
– volume: 329
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b41
  article-title: Predicting multi-port vessel traffic flow: An improved spatial-temporal graph neural network with uncertainty quantification
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.121135
– volume: 282
  year: 2023
  ident: 10.1016/j.ress.2025.111885_b25
  article-title: A context-aware approach for vessels’ trajectory prediction
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.114916
– volume: 300
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b33
  article-title: G-Trans: A hierarchical approach to vessel trajectory prediction with GRU-based transformer
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.117431
– start-page: 2913
  year: 2019
  ident: 10.1016/j.ress.2025.111885_b18
  article-title: Wavelet analysis based hidden Markov model for large ship trajectory prediction
– volume: 266
  year: 2026
  ident: 10.1016/j.ress.2025.111885_b2
  article-title: Ship abnormal behaviour detection based on AIS data at the approach to ports
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.111712
– volume: 34
  start-page: 2318
  issue: 4
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b66
  article-title: MRGTraj: A novel non-autoregressive approach for human trajectory prediction
  publication-title: IEEE Trans Circuits Syst Video Technol
  doi: 10.1109/TCSVT.2023.3307442
– volume: 9
  start-page: 7765
  issue: 12
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b39
  article-title: Learning dynamic interactions and long-term patterns with spatio-temporal graphs for multi-vessel trajectory prediction
  publication-title: IEEE Trans Intell Veh
  doi: 10.1109/TIV.2024.3401864
– start-page: 13279
  year: 2021
  ident: 10.1016/j.ress.2025.111885_b60
  article-title: Likelihood-based diverse sampling for trajectory forecasting
– volume: 264
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b54
  article-title: Modelling collision risk between container and fishing ships during cross encounter in a cordon area
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.111373
– volume: 191
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b38
  article-title: Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction
  publication-title: Transp Res Part E: Logist Transp Rev
  doi: 10.1016/j.tre.2024.103748
– volume: 73
  start-page: 1
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b58
  article-title: Goal-oriented pedestrian trajectory prediction considering spatial-temporal interactions
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2024.3488159
– start-page: 6271
  year: 2019
  ident: 10.1016/j.ress.2025.111885_b64
  article-title: STGAT: Modeling spatial-temporal interactions for human trajectory prediction
– volume: 126
  year: 2023
  ident: 10.1016/j.ress.2025.111885_b51
  article-title: Conditional temporal GAN for intent-aware vessel trajectory prediction in the precautionary area
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106776
– volume: 57
  start-page: 4329
  issue: 6
  year: 2021
  ident: 10.1016/j.ress.2025.111885_b27
  article-title: Deep learning methods for vessel trajectory prediction based on recurrent neural networks
  publication-title: IEEE Trans Aerosp Electron Syst
  doi: 10.1109/TAES.2021.3096873
– volume: 25
  start-page: 2627
  issue: 3
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b6
  article-title: NOMA-assisted secure offloading for vehicular edge computing networks with asynchronous deep reinforcement learning
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2023.3320861
– volume: 129
  start-page: 168
  year: 2014
  ident: 10.1016/j.ress.2025.111885_b21
  article-title: Online ship roll motion prediction based on grey sequential extreme learning machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.09.043
– volume: 37
  start-page: 2875
  issue: 3
  year: 2023
  ident: 10.1016/j.ress.2025.111885_b59
  article-title: Multi-stream representation learning for pedestrian trajectory prediction
  publication-title: Proc AAAI Conf Artif Intell
– volume: 170
  year: 2023
  ident: 10.1016/j.ress.2025.111885_b42
  article-title: A multi-view attention-based spatial-temporal network for airport arrival flow prediction
  publication-title: Transp Res Part E: Logist Transp Rev
  doi: 10.1016/j.tre.2022.102997
– volume: 261
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b52
  article-title: Enhancing risk perception by integrating ship interactions in multi-ship encounters: A graph-based learning method
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2025.111150
– volume: 21
  start-page: 136
  issue: 3
  year: 2022
  ident: 10.1016/j.ress.2025.111885_b63
  article-title: A model for vessel trajectory prediction based on long short-term memory neural network
  publication-title: J Mar Eng Technol
  doi: 10.1080/20464177.2019.1665258
– volume: 241
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b8
  article-title: Deep learning-based framework for regional risk assessment in a multi-ship encounter situation based on the transformer network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109636
– volume: 110
  start-page: 1532
  issue: 10
  year: 2022
  ident: 10.1016/j.ress.2025.111885_b5
  article-title: Next-gen intelligent situational awareness systems for maritime surveillance and autonomous navigation [point of view]
  publication-title: Proc IEEE
  doi: 10.1109/JPROC.2022.3194445
– volume: 25
  start-page: 21367
  issue: 12
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b47
  article-title: STMGF-Net: A spatiotemporal multi-graph fusion network for vessel trajectory forecasting in intelligent maritime navigation
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2024.3465234
– volume: 241
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b31
  article-title: Deep learning-based framework for regional risk assessment in a multi-ship encounter situation based on the transformer network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2023.109636
– start-page: 2255
  year: 2018
  ident: 10.1016/j.ress.2025.111885_b61
  article-title: Social GAN: Socially acceptable trajectories with generative adversarial networks
– volume: 29
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.ress.2025.111885_b14
  article-title: Mathematical models for ship path prediction in manoeuvring simulation systems
  publication-title: Ocean Eng
  doi: 10.1016/S0029-8018(01)00023-3
– volume: 192
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b32
  article-title: Bi-directional information fusion-driven deep network for ship trajectory prediction in intelligent transportation systems
  publication-title: Transp Res Part E: Logist Transp Rev
  doi: 10.1016/j.tre.2024.103770
– volume: 252
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b49
  article-title: Interaction aware and multi-modal distribution for ship trajectory prediction with spatio-temporal crisscross hybrid network
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110463
– volume: 216
  year: 2020
  ident: 10.1016/j.ress.2025.111885_b20
  article-title: Kernel-based support vector regression for nonparametric modeling of ship maneuvering motion
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2020.107994
– volume: 23
  start-page: 13745
  issue: 8
  year: 2022
  ident: 10.1016/j.ress.2025.111885_b55
  article-title: A method for correcting the closest point of approach index during vessel encounters based on dimension data from AIS
  publication-title: IEEE Trans Intell Transp Syst
  doi: 10.1109/TITS.2021.3127223
– volume: 22
  start-page: 2550
  issue: 4
  year: 2020
  ident: 10.1016/j.ress.2025.111885_b4
  article-title: Machine-type communication for maritime internet of things: A design
  publication-title: IEEE Commun Surv Tutor.
  doi: 10.1109/COMST.2020.3015694
– volume: 7
  start-page: 1023
  issue: 2
  year: 2023
  ident: 10.1016/j.ress.2025.111885_b40
  article-title: Deep collaborative intelligence-driven traffic forecasting in green internet of vehicles
  publication-title: IEEE Trans Green Commun Netw
  doi: 10.1109/TGCN.2022.3193849
– volume: 36
  start-page: 5633
  issue: 11
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b53
  article-title: Attention-aware social graph transformer networks for stochastic trajectory prediction
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2024.3390765
– start-page: 1
  year: 2017
  ident: 10.1016/j.ress.2025.111885_b17
  article-title: AIS-based vessel trajectory prediction
– volume: 9
  start-page: 3080
  issue: 5
  year: 2022
  ident: 10.1016/j.ress.2025.111885_b36
  article-title: Deep learning-powered vessel trajectory prediction for improving smart traffic services in maritime internet of things
  publication-title: IEEE Trans Netw Sci Eng
  doi: 10.1109/TNSE.2022.3140529
– volume: 136
  year: 2023
  ident: 10.1016/j.ress.2025.111885_b34
  article-title: QSD-LSTM: Vessel trajectory prediction using long short-term memory with quaternion ship domain
  publication-title: Appl Ocean Res
  doi: 10.1016/j.apor.2023.103592
– volume: 287
  year: 2023
  ident: 10.1016/j.ress.2025.111885_b45
  article-title: Trajectory prediction of seagoing ships in dynamic traffic scenes via a gated spatio-temporal graph aggregation network
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2023.115886
– volume: 203
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b50
  article-title: Uncertainty-aware ship trajectory prediction via spatio-temporal graph transformer
  publication-title: Transp Res Part E: Logist Transp Rev
  doi: 10.1016/j.tre.2025.104315
– volume: 262
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b12
  article-title: STIA-DJANet: Spatial-temporal intention-aware vessel trajectory prediction based on dual-joint attention network for e-navigation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2024.125550
– start-page: 1183
  year: 2020
  ident: 10.1016/j.ress.2025.111885_b16
  article-title: Ship motion trajectory and prediction based on vector analysis
  publication-title: J Coast Res
  doi: 10.2112/SI95-230.1
– volume: 36
  start-page: 4304
  issue: 8
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b62
  article-title: Trajectory distribution aware graph convolutional network for trajectory prediction considering spatio-temporal interactions and scene information
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2023.3329676
– volume: 37
  start-page: 1571
  issue: 4
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b44
  article-title: AISFuser: Encoding maritime graphical representations with temporal attribute modeling for vessel trajectory prediction
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2025.3531770
– volume: 9
  issue: 3
  year: 2021
  ident: 10.1016/j.ress.2025.111885_b22
  article-title: Predicting ship trajectory based on neural networks using AIS data
  publication-title: J Mar Sci Eng
  doi: 10.3390/jmse9030254
– volume: 308
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b24
  article-title: Enhancing short-term vessel trajectory prediction with clustering for heterogeneous and multi-modal movement patterns
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.118303
– volume: 253
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b10
  article-title: Letting losses be lessons: Human-machine cooperation in maritime transport
  publication-title: Reliab Eng Syst Saf
  doi: 10.1016/j.ress.2024.110547
– volume: 146
  year: 2024
  ident: 10.1016/j.ress.2025.111885_b37
  article-title: MFAN: Mixing feature attention network for trajectory prediction
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2023.109997
– volume: 321
  year: 2025
  ident: 10.1016/j.ress.2025.111885_b35
  article-title: SNIINet: Trajectory prediction using ship navigation information interaction-aware neural network
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2025.120368
– start-page: 14412
  year: 2020
  ident: 10.1016/j.ress.2025.111885_b56
  article-title: Social-STGCNN: A social spatio-temporal graph convolutional neural network for human trajectory prediction
SSID ssj0004957
Score 2.472643
Snippet Advances in maritime instrumentation and measurement (I&M), particularly through the widespread adoption of automatic identification system (AIS), have...
Advances in maritime instrumentation and measurement (I&M), particularly through the widespread adoption of automatic identification system (AIS), have...
SourceID swepub
crossref
elsevier
SourceType Open Access Repository
Index Database
Publisher
StartPage 111885
SubjectTerms Conditional variational autoencoder
Cooperative intention constructor
Graph convolutional network
Intelligent situational awareness systems
Multi-modal interaction extractor
Trajectory prediction
Title Multi-modal graph convolutional network for vessel trajectory prediction based on cooperative intention enhance using conditional variational autoencoder
URI https://dx.doi.org/10.1016/j.ress.2025.111885
https://research.chalmers.se/publication/549377
Volume 267
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0951-8320
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004957
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMcEE9RXvKBWxWUOHFiHytUBBWqOBRp4WIlfmizapNVs1l1fwpXfinjR7LhKRBwiSIra0eZb-2Z8TefEXpuaGI4hA2RJBmNstKYiFVERlLmsZJVaUpTucMmitNTNp_zd7PZ56EWZnNeNA27uuKr_2pqaANj29LZPzD32Ck0wD0YHa5gdrj-luFdSW100Sr4-E6O2jHLw5DQ1njit-MXbqxyuGWbl0uXvd9azQBV--PD7QKn7GaCbNuVDgrhVl7CEyR1s3DlBn2o27V7336EDcTfQ46x7Net1cpUgQU8aIHr89orhG-ho1ES0QHRi0sfdqUJGiWO4VOHxPZJD-O2Y767d6neD_VILHLshI-LetsH3IeUBsl3nK4xN5lEMNXE02ma-GM7vpvyffZh-cJmJyDeJ9SuAsyfA_QDKe2gobQQcuEOqOlEpwXgFSI3rURhKBdZlRJRSsWFTsG_Iirl4GVdQ_ukoBxmzv2jN8fzk131Lfd6ssNLh9IszyL89q1-6v5MdWqdb3N2G90KQQk-8mC6g2a6uYtuTqQq76FPE1hhByv8FaxwgBUGWGEPK7yDFd7BCjtYYbiZwAqPsMIBVtjBCk9ghSewwhNY3UfvXx2fvXwdhWM97HyQFVFhUlOlsWaG60xRBisA0caYOCnzNAF_0ZBMSpPDY4xUhax4nsmYqorKnFZJkj5Ae03b6IcIg_eqbBFaWUAUY7ewDVNgo4TFmYlZJg_Q4fC1xcqrt4iB1ri0UOiEtY3wtjlAdDCICP6n9ysFYO2Xv3vrrTeO8VdAe_Rvu3uMbuz-Y0_Q3vqy10_RdblZ193lswDmL1MQ2uY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-modal+graph+convolutional+network+for+vessel+trajectory+prediction+based+on+cooperative+intention+enhance+using+conditional+variational+autoencoder&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Jiang%2C+Junhao&rft.au=Zuo%2C+Yi&rft.au=Li%2C+Zhiyuan&rft.date=2026-03-01&rft.issn=0951-8320&rft.volume=267&rft_id=info:doi/10.1016%2Fj.ress.2025.111885&rft.externalDocID=oai_research_chalmers_se_1f9548ed_7f59_4b32_acd9_e34312d39317
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon