Generating Natural Language Sentences Explaining Trends and Relationships of Two Time-Series Data
We propose a method for generating natural language explanations that describe trends and relationships between two time-series data. To address this task, it is essential to analyze the dynamic behavior of both time series and generate textual explanations based on the analytical outcomes. We devel...
Gespeichert in:
| Veröffentlicht in: | Journal of advanced computational intelligence and intelligent informatics Jg. 29; H. 6; S. 1427 - 1442 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Tokyo
Fuji Technology Press Co. Ltd
20.11.2025
|
| Schlagworte: | |
| ISSN: | 1343-0130, 1883-8014 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We propose a method for generating natural language explanations that describe trends and relationships between two time-series data. To address this task, it is essential to analyze the dynamic behavior of both time series and generate textual explanations based on the analytical outcomes. We developed a model that extended the vanilla Transformer architecture to better capture the temporal features relevant to explanation generation. To train the model, we constructed a synthetic, domain-agnostic dataset that simulated time-series patterns and interactions. We conducted two experiments to evaluate the effectiveness of the proposed approach using the synthesized datasets. The first experiment focused on generating explanations for the time-series trends. The results demonstrated that our model could generate accurate and coherent explanations with high accuracy. The second experiment addressed more complex scenarios in which the model was required to answer questions regarding the relationship between two interacting time-series. Although the model initially struggled to achieve high accuracy in this task, we observed that step-by-step training significantly improved its performance. These findings highlight both the potential and current limitations of Transformer-based approaches for interpretable time-series analysis. |
|---|---|
| AbstractList | We propose a method for generating natural language explanations that describe trends and relationships between two time-series data. To address this task, it is essential to analyze the dynamic behavior of both time series and generate textual explanations based on the analytical outcomes. We developed a model that extended the vanilla Transformer architecture to better capture the temporal features relevant to explanation generation. To train the model, we constructed a synthetic, domain-agnostic dataset that simulated time-series patterns and interactions. We conducted two experiments to evaluate the effectiveness of the proposed approach using the synthesized datasets. The first experiment focused on generating explanations for the time-series trends. The results demonstrated that our model could generate accurate and coherent explanations with high accuracy. The second experiment addressed more complex scenarios in which the model was required to answer questions regarding the relationship between two interacting time-series. Although the model initially struggled to achieve high accuracy in this task, we observed that step-by-step training significantly improved its performance. These findings highlight both the potential and current limitations of Transformer-based approaches for interpretable time-series analysis. |
| Author | Kobayashi, Ichiro Nakano, Yukako |
| Author_xml | – sequence: 1 givenname: Yukako orcidid: 0009-0004-5918-4868 surname: Nakano fullname: Nakano, Yukako organization: Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan – sequence: 2 givenname: Ichiro orcidid: 0000-0001-7789-475X surname: Kobayashi fullname: Kobayashi, Ichiro organization: Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan |
| BookMark | eNotkFFLwzAUhYNMcM79AZ8CPncmTZqkjzLnFIaCq88hTW9nRpfWpEX993abL_eeC-fcA981mvjWA0K3lCxSkovsfm-sc2480mzRUZ7KCzSlSrFEEcono2acJYQycoXmMe4JGXUqCKdTZNbgIZje-R1-Nf0QTIM3xu8GswO8Bd-DtxDx6qdrjPNHVxHAVxEbX-F3aMZk6-On6yJua1x8t7hwB0i2ENwYezS9uUGXtWkizP_3DH08rYrlc7J5W78sHzaJTTmXibCQMUVLq2TFuRBVTQCYLHmmaD4OK0qiJJciZ5WsOTXKEiOUEEqWhnFgM3R3_tuF9muA2Ot9OwQ_VmqWyjQXOeF8dKVnlw1tjAFq3QV3MOFXU6JPNPWZpj7S1Cea7A_ehmqm |
| Cites_doi | 10.14778/3514061.3514067 10.18653/v1/2021.acl-long.466 10.1002/int.21671 10.18653/v1/2020.inlg-1.21 10.18653/v1/W19-8640 10.18653/v1/D19-5615 10.18653/v1/P17-1126 10.18653/v1/2021.eacl-main.125 10.3115/v1/P15-1142 10.1109/JIOT.2024.3419260 10.18653/v1/2020.inlg-1.20 10.1609/aaai.v33i01.33016786 10.1016/j.fss.2015.06.016 10.18653/v1/2022.acl-long.277 10.18653/v1/2023.emnlp-main.389 10.18653/v1/2021.emnlp-main.55 10.3115/1073083.1073135 10.1016/j.asoc.2022.108612 10.18653/v1/W19-8611 10.1016/j.fss.2015.06.018 10.18653/v1/2023.acl-long.401 |
| ContentType | Journal Article |
| Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
| CorporateAuthor | Editorial Office |
| CorporateAuthor_xml | – name: Editorial Office |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.20965/jaciii.2025.p1427 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database (1962 - current) ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: AUTh Library subscriptions: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 1442 |
| ExternalDocumentID | 10_20965_jaciii_2025_p1427 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2447-6ce5381bc87d4466df0ee37b45819458c6b08747693d7f41a8c0a686687ba34e3 |
| IEDL.DBID | K7- |
| ISSN | 1343-0130 |
| IngestDate | Thu Nov 20 00:30:30 EST 2025 Thu Nov 27 00:51:19 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2447-6ce5381bc87d4466df0ee37b45819458c6b08747693d7f41a8c0a686687ba34e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-7789-475X 0009-0004-5918-4868 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p1427 |
| PQID | 3272969044 |
| PQPubID | 4911628 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_3272969044 crossref_primary_10_20965_jaciii_2025_p1427 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-20 |
| PublicationDateYYYYMMDD | 2025-11-20 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2025 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2025.p1427-13 key-10.20965/jaciii.2025.p1427-12 key-10.20965/jaciii.2025.p1427-15 key-10.20965/jaciii.2025.p1427-14 key-10.20965/jaciii.2025.p1427-17 key-10.20965/jaciii.2025.p1427-16 key-10.20965/jaciii.2025.p1427-19 key-10.20965/jaciii.2025.p1427-18 key-10.20965/jaciii.2025.p1427-9 key-10.20965/jaciii.2025.p1427-7 key-10.20965/jaciii.2025.p1427-8 key-10.20965/jaciii.2025.p1427-31 key-10.20965/jaciii.2025.p1427-30 key-10.20965/jaciii.2025.p1427-11 key-10.20965/jaciii.2025.p1427-10 key-10.20965/jaciii.2025.p1427-1 key-10.20965/jaciii.2025.p1427-2 key-10.20965/jaciii.2025.p1427-5 key-10.20965/jaciii.2025.p1427-6 key-10.20965/jaciii.2025.p1427-3 key-10.20965/jaciii.2025.p1427-4 key-10.20965/jaciii.2025.p1427-24 key-10.20965/jaciii.2025.p1427-23 key-10.20965/jaciii.2025.p1427-26 key-10.20965/jaciii.2025.p1427-25 key-10.20965/jaciii.2025.p1427-28 key-10.20965/jaciii.2025.p1427-27 key-10.20965/jaciii.2025.p1427-29 key-10.20965/jaciii.2025.p1427-20 key-10.20965/jaciii.2025.p1427-22 key-10.20965/jaciii.2025.p1427-21 |
| References_xml | – ident: key-10.20965/jaciii.2025.p1427-25 doi: 10.14778/3514061.3514067 – ident: key-10.20965/jaciii.2025.p1427-10 doi: 10.18653/v1/2021.acl-long.466 – ident: key-10.20965/jaciii.2025.p1427-20 doi: 10.1002/int.21671 – ident: key-10.20965/jaciii.2025.p1427-24 doi: 10.18653/v1/2020.inlg-1.21 – ident: key-10.20965/jaciii.2025.p1427-7 doi: 10.18653/v1/W19-8640 – ident: key-10.20965/jaciii.2025.p1427-9 doi: 10.18653/v1/D19-5615 – ident: key-10.20965/jaciii.2025.p1427-18 – ident: key-10.20965/jaciii.2025.p1427-26 – ident: key-10.20965/jaciii.2025.p1427-6 doi: 10.18653/v1/P17-1126 – ident: key-10.20965/jaciii.2025.p1427-28 – ident: key-10.20965/jaciii.2025.p1427-31 – ident: key-10.20965/jaciii.2025.p1427-12 doi: 10.18653/v1/2021.eacl-main.125 – ident: key-10.20965/jaciii.2025.p1427-16 doi: 10.3115/v1/P15-1142 – ident: key-10.20965/jaciii.2025.p1427-22 doi: 10.1109/JIOT.2024.3419260 – ident: key-10.20965/jaciii.2025.p1427-3 doi: 10.18653/v1/2020.inlg-1.20 – ident: key-10.20965/jaciii.2025.p1427-15 doi: 10.1609/aaai.v33i01.33016786 – ident: key-10.20965/jaciii.2025.p1427-13 – ident: key-10.20965/jaciii.2025.p1427-11 – ident: key-10.20965/jaciii.2025.p1427-17 – ident: key-10.20965/jaciii.2025.p1427-19 doi: 10.1016/j.fss.2015.06.016 – ident: key-10.20965/jaciii.2025.p1427-4 doi: 10.18653/v1/2022.acl-long.277 – ident: key-10.20965/jaciii.2025.p1427-8 – ident: key-10.20965/jaciii.2025.p1427-1 doi: 10.18653/v1/2023.emnlp-main.389 – ident: key-10.20965/jaciii.2025.p1427-5 doi: 10.18653/v1/2021.emnlp-main.55 – ident: key-10.20965/jaciii.2025.p1427-30 – ident: key-10.20965/jaciii.2025.p1427-27 doi: 10.3115/1073083.1073135 – ident: key-10.20965/jaciii.2025.p1427-23 doi: 10.1016/j.asoc.2022.108612 – ident: key-10.20965/jaciii.2025.p1427-29 – ident: key-10.20965/jaciii.2025.p1427-14 doi: 10.18653/v1/W19-8611 – ident: key-10.20965/jaciii.2025.p1427-21 doi: 10.1016/j.fss.2015.06.018 – ident: key-10.20965/jaciii.2025.p1427-2 doi: 10.18653/v1/2023.acl-long.401 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.3410776 |
| Snippet | We propose a method for generating natural language explanations that describe trends and relationships between two time-series data. To address this task, it... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1427 |
| SubjectTerms | Accuracy Datasets Natural language Time series Trends |
| Title | Generating Natural Language Sentences Explaining Trends and Relationships of Two Time-Series Data |
| URI | https://www.proquest.com/docview/3272969044 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Open Access: DOAJ - Directory of Open Access Journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: AUTh Library subscriptions: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagMLBQnqJQKg9syOAkju1MiKeQQFXFS4glcmxHlKEpbYG_z10ePBYWFi9Rosh3Pn93_vwdIXvWaJO53DBp85gJGVuWcRsz7qRInOAiK2UXH65Vv68fH5NBXXCb1rTKJiaWgdoVFmvkh1EIMBBSOSGOxq8Mu0bh6WrdQmOeLARhGKCfXynW-FMMqQAghOC75gJYhYsqBxNII4p4dY8mRA2UwxdjUdAhBBhwMA4ENpr5uVf9DtXl_nPR_u-fr5DlGnnS48pVVsmcH62RdtPVgdaLfJ2YSoka6dC0b0pZDnpdVzXpLUp4IvOaInmv6i5BK14tNSNHv7h1z8PxlBY5vfsoKF4zYViGg9fOzMxskPuL87vTS1Y3YmAWdn8FdvQQF4PMauXw_Nfl3PtIZSIGPAGDlRnXkJfIJHIqF4HRlhuppdQqM5Hw0SZpjYqR3yLUWOUj5xPtAbsIFZs8SwB1JNrIJNbKdMh-M-XpuNLbSCFPKQ2UVgZK0UBpaaAO6TZTntZrb5p-z_f23493yBJ-Cm8WhrxLWrPJm98li_Z9NpxOemTh5Lw_uOmVWXqvdCwYB_HTJ9Gx02U |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB4BRaIXKBQELRQf2lPl4k0c2zkghKAIxHZViS3iFhzbEcthd8tuQfwpfmNn4oTHpTcOveSSh5LM55lvxvMA-OyssaWvLFeuyrhUmeOlcBkXXsncSyHLuu3ieVf3eubiIv85Aw9tLQylVbY6sVbUfuQoRr6TJkgD0ZWTcm_8m9PUKNpdbUdoRFichvs7dNkmuyeHKN8vSXL0vX9wzJupAtyhKdP4UgEXead0RnvazPSVCCHVpczQOOLBqVIYJNkqT72uZMcaJ6wyShld2lSGFJ87C29kihfRJrDmLX4zdD2QkXSeYjzIjYSMPp-ktKVUxLqdhHqu7FxbRw0kEqQd38YdSYNtntvGl6ahtndHS__bn3oHiw2zZvtxKSzDTBiuwFI7tYI1Suw92Nhpm9K9Wc_WbUdYt4nasjNqUUqZ5YySE-P0DBbzhpkdevaYO3g1GE_YqGL9uxGjMhpOYUa87dBO7Sr8epUPXYO54WgY1oFZp0PqQ24CcjOpM1uVObKq3FiVZ0bbDfjairgYx34iBfphNSCKCIiCAFHUgNiAzVbERaNbJsWTfD_8-_Q2LBz3f3SL7knv9CO8pcdSFWUiNmFuevMnbMG8u50OJjefahgzuHxtNPwFkqIp_g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Generating+Natural+Language+Sentences+Explaining+Trends+and+Relationships+of+Two+Time-Series+Data&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Nakano%2C+Yukako&rft.au=Kobayashi%2C+Ichiro&rft.date=2025-11-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=6&rft.spage=1427&rft.epage=1442&rft_id=info:doi/10.20965%2Fjaciii.2025.p1427&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1427 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |