A Method for Recognizing Entities in Power News Texts Based on Dependency Syntactic Parsing

Addressing the challenge that news texts in the power field often contain numerous professional terms and many new terms are generated every year, which are difficult to accurately identify using general named entity recognition methods, this paper proposes an entity recognition model for power text...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of advanced computational intelligence and intelligent informatics Ročník 29; číslo 6; s. 1283 - 1291
Hlavní autori: Wu, Yun, Liu, Xinru, Du, Yan, Yang, Jieming, Liu, Zhenhong, Yang, Kai, Wang, Ziyi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Tokyo Fuji Technology Press Co. Ltd 20.11.2025
Predmet:
ISSN:1343-0130, 1883-8014
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Addressing the challenge that news texts in the power field often contain numerous professional terms and many new terms are generated every year, which are difficult to accurately identify using general named entity recognition methods, this paper proposes an entity recognition model for power texts based on dependency syntactic analysis (SYN-BiLSTM-CRF). This model first generates power text word vectors and inputs them into a forward LSTM for feature extraction. Simultaneously, dependency syntactic parsing is performed on the power text, and the syntactic information vectors are fused with the output of the forward LSTM before being input into a backward LSTM. This enhances the model’s ability to learn inter-word dependency relations by incorporating additional syntactic features. Finally, CRF is employed to obtain the predicted NER labels. The experiments demonstrate that the proposed SYN-BiLSTM-CRF model achieves an F1-score of 85.36% on power-related texts, representing a 2.78% improvement over the baseline BiLSTM-CRF model (82.58%). Additionally, it attains a recall of 89.06%, outperforming the BERT model’s recall (87.59%). These results prove that the proposed method significantly enhances entity recognition accuracy in this specialized domain.
AbstractList Addressing the challenge that news texts in the power field often contain numerous professional terms and many new terms are generated every year, which are difficult to accurately identify using general named entity recognition methods, this paper proposes an entity recognition model for power texts based on dependency syntactic analysis (SYN-BiLSTM-CRF). This model first generates power text word vectors and inputs them into a forward LSTM for feature extraction. Simultaneously, dependency syntactic parsing is performed on the power text, and the syntactic information vectors are fused with the output of the forward LSTM before being input into a backward LSTM. This enhances the model’s ability to learn inter-word dependency relations by incorporating additional syntactic features. Finally, CRF is employed to obtain the predicted NER labels. The experiments demonstrate that the proposed SYN-BiLSTM-CRF model achieves an F1-score of 85.36% on power-related texts, representing a 2.78% improvement over the baseline BiLSTM-CRF model (82.58%). Additionally, it attains a recall of 89.06%, outperforming the BERT model’s recall (87.59%). These results prove that the proposed method significantly enhances entity recognition accuracy in this specialized domain.
Author Wu, Yun
Liu, Zhenhong
Yang, Jieming
Yang, Kai
Liu, Xinru
Du, Yan
Wang, Ziyi
Author_xml – sequence: 1
  givenname: Yun
  orcidid: 0000-0001-5610-5117
  surname: Wu
  fullname: Wu, Yun
  organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China
– sequence: 2
  givenname: Xinru
  surname: Liu
  fullname: Liu, Xinru
  organization: Shandong University of Finance and Economics, 40 Shungeng Road, Shizhong District, Jinan, Shandong 250014, China
– sequence: 3
  givenname: Yan
  surname: Du
  fullname: Du, Yan
  organization: Jilin Meteorological Observation and Protection Center, Jilin Meteorological Service, No.176 Suizhong Road, Lvyuan District, Changchun, Jilin 130000, China
– sequence: 4
  givenname: Jieming
  orcidid: 0000-0002-2832-2648
  surname: Yang
  fullname: Yang, Jieming
  organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China
– sequence: 5
  givenname: Zhenhong
  surname: Liu
  fullname: Liu, Zhenhong
  organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China
– sequence: 6
  givenname: Kai
  orcidid: 0009-0008-3408-4595
  surname: Yang
  fullname: Yang, Kai
  organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China
– sequence: 7
  givenname: Ziyi
  orcidid: 0009-0004-5446-2718
  surname: Wang
  fullname: Wang, Ziyi
  organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China
BookMark eNotkEtPAjEUhRuDiYj8AVdNXA_2xUxniYiPBJUorlw0M-0dLNF2bIcg_noruDrnJifn3HynqOe8A4TOKRkxUubjy3WlrbXpYONRS5nkR6hPpeSZJFT0kueCZ4RycoKGMa4JSZ7lRNA-epvgB-jevcGND_gZtF85-2PdCs9cZzsLEVuHF34LAT_CNuIlfHcRX1URDPYOX0MLzoDTO_yyc12lO6vxogoxVZyh46b6iDD81wF6vZktp3fZ_On2fjqZZ5qJ9JjUSWvOjdC8NrqomckNaUDnEiSjJB8LA6KEImdM6ErKWpoaZFNQCUUDhA_QxaG3Df5rA7FTa78JLk0qzgpW5iXhRUqxQ0oHH2OARrXBflZhpyhRe47qwFH9cVR7jvwXEOtpYw
Cites_doi 10.18653/v1/2020.findings-emnlp.378
10.20965/jaciii.2023.p1151
10.3390/info13020049
10.1609/aaai.v33i01.33017370
10.1109/ICDSCA53499.2021.9650256
10.18653/v1/N19-1423
10.3115/v1/P14-2050
10.18653/v1/D17-1282
10.1162/tacl_a_00104
10.18653/v1/N16-1030
10.1007/s10462-025-11162-5
10.18653/v1/D17-1209
10.1609/aaai.v34i05.6409
10.18653/v1/D19-1399
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
CorporateAuthor Editorial Office
CorporateAuthor_xml – name: Editorial Office
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2025.p1283
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 1291
ExternalDocumentID 10_20965_jaciii_2025_p1283
GroupedDBID AAYXX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
ISHAI
JSI
JSP
K7-
P2P
PHGZM
PHGZT
PQGLB
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2443-8cc24b33d4c3bdc7b2d6d0fec68e8210654de49e76224ca88b8dbe8f718e7fe03
IEDL.DBID K7-
ISSN 1343-0130
IngestDate Tue Dec 02 10:02:57 EST 2025
Thu Nov 27 00:51:12 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2443-8cc24b33d4c3bdc7b2d6d0fec68e8210654de49e76224ca88b8dbe8f718e7fe03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2832-2648
0009-0008-3408-4595
0009-0004-5446-2718
0000-0001-5610-5117
OpenAccessLink https://doi.org/10.20965/jaciii.2025.p1283
PQID 3272969037
PQPubID 4911628
PageCount 9
ParticipantIDs proquest_journals_3272969037
crossref_primary_10_20965_jaciii_2025_p1283
PublicationCentury 2000
PublicationDate 2025-11-20
PublicationDateYYYYMMDD 2025-11-20
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-20
  day: 20
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2025
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2025.p1283-3
key-10.20965/jaciii.2025.p1283-21
key-10.20965/jaciii.2025.p1283-4
key-10.20965/jaciii.2025.p1283-22
key-10.20965/jaciii.2025.p1283-5
key-10.20965/jaciii.2025.p1283-6
key-10.20965/jaciii.2025.p1283-20
key-10.20965/jaciii.2025.p1283-7
key-10.20965/jaciii.2025.p1283-25
key-10.20965/jaciii.2025.p1283-8
key-10.20965/jaciii.2025.p1283-26
key-10.20965/jaciii.2025.p1283-9
key-10.20965/jaciii.2025.p1283-23
key-10.20965/jaciii.2025.p1283-24
key-10.20965/jaciii.2025.p1283-10
key-10.20965/jaciii.2025.p1283-11
key-10.20965/jaciii.2025.p1283-14
key-10.20965/jaciii.2025.p1283-15
key-10.20965/jaciii.2025.p1283-12
key-10.20965/jaciii.2025.p1283-13
key-10.20965/jaciii.2025.p1283-18
key-10.20965/jaciii.2025.p1283-19
key-10.20965/jaciii.2025.p1283-16
key-10.20965/jaciii.2025.p1283-17
key-10.20965/jaciii.2025.p1283-1
key-10.20965/jaciii.2025.p1283-2
References_xml – ident: key-10.20965/jaciii.2025.p1283-24
  doi: 10.18653/v1/2020.findings-emnlp.378
– ident: key-10.20965/jaciii.2025.p1283-5
– ident: key-10.20965/jaciii.2025.p1283-3
– ident: key-10.20965/jaciii.2025.p1283-10
  doi: 10.20965/jaciii.2023.p1151
– ident: key-10.20965/jaciii.2025.p1283-20
  doi: 10.3390/info13020049
– ident: key-10.20965/jaciii.2025.p1283-1
– ident: key-10.20965/jaciii.2025.p1283-18
  doi: 10.1609/aaai.v33i01.33017370
– ident: key-10.20965/jaciii.2025.p1283-13
  doi: 10.1109/ICDSCA53499.2021.9650256
– ident: key-10.20965/jaciii.2025.p1283-11
  doi: 10.18653/v1/N19-1423
– ident: key-10.20965/jaciii.2025.p1283-16
  doi: 10.3115/v1/P14-2050
– ident: key-10.20965/jaciii.2025.p1283-21
– ident: key-10.20965/jaciii.2025.p1283-9
  doi: 10.18653/v1/D17-1282
– ident: key-10.20965/jaciii.2025.p1283-23
– ident: key-10.20965/jaciii.2025.p1283-25
– ident: key-10.20965/jaciii.2025.p1283-8
  doi: 10.1162/tacl_a_00104
– ident: key-10.20965/jaciii.2025.p1283-6
– ident: key-10.20965/jaciii.2025.p1283-7
  doi: 10.18653/v1/N16-1030
– ident: key-10.20965/jaciii.2025.p1283-12
  doi: 10.1007/s10462-025-11162-5
– ident: key-10.20965/jaciii.2025.p1283-15
– ident: key-10.20965/jaciii.2025.p1283-17
  doi: 10.18653/v1/D17-1209
– ident: key-10.20965/jaciii.2025.p1283-4
– ident: key-10.20965/jaciii.2025.p1283-2
– ident: key-10.20965/jaciii.2025.p1283-14
  doi: 10.1609/aaai.v34i05.6409
– ident: key-10.20965/jaciii.2025.p1283-19
  doi: 10.18653/v1/D19-1399
– ident: key-10.20965/jaciii.2025.p1283-22
– ident: key-10.20965/jaciii.2025.p1283-26
SSID ssj0001326041
ssib051641541
Score 2.3415504
Snippet Addressing the challenge that news texts in the power field often contain numerous professional terms and many new terms are generated every year, which are...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1283
SubjectTerms Accuracy
Deep learning
Informatics
Natural language processing
Neural networks
Optimization
Recall
Recognition
Semantics
Texts
Words (language)
Title A Method for Recognizing Entities in Power News Texts Based on Dependency Syntactic Parsing
URI https://www.proquest.com/docview/3272969037
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051641541
  issn: 1343-0130
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest advanced technologies & aerospace journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF209eDF-onVWvbgTWI3u0mzOUmrLYJYQq0gegjZj0A9pLWtQv31zm42SC9evCSHQAg7s2_eTHbmIXSp4ygH3i09X3FIULRiXpwJ4kmupPTzXIVMWLGJaDTiLy9x4gpuS3esssJEC9RqJk2NvMMo0EBI5Vh0M__wjGqU-bvqJDS2Ud2n1Dd-_hB5lT-FkAoAQ_B_ay7AVUhQ5mCBOUbESNlHQ80MlM57Js1ABwo04HoOuM02Y9UmVNv4M2z898v30Z5jnrhXusoB2tLFIWpUqg7YbfIj9NbDj1ZWGgOfxePygNE3RDg8cPNX8bTAiVFXwwYi8QTwfYn7EA4VnhX4zsnqyjV-Whcr24SFk8wWJY7R83Awub33nASDJyHuM49LuAvGVCCZUDISVHUVybXscs0hW-yGgdJBrAFSaSAzzgVXQvMcIp6Ock3YCaoVs0KfIswVyYBb8EBqEmSSc4D8mDOlRChiktMmuqoWO52XkzZSyFCsadLSNKkxTWpN00StarFTt-uW6e9Kn_39-BztmleZnkJKWqi2WnzqC7Qjv1bT5aKN6v3BKBm3bX7eti4F1yR8_QGtUdLi
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NS-RAEC1cFdaLuq7i99Zh97REe7p7Jp2DiJ8oo8OwO4LgIaY_AnrIjM6ojD_K32h1J0G8ePPgKYdAQ1Iv9V51uuoB_HZJnJPuNlHDKipQnBVRkmkWGWWNaeS5bQodzCbiTkddXibdCXipe2H8sco6J4ZEbfvG75FvC04ykEo5Ee8O7iLvGuX_rtYWGiUs2m78RCXbcOf0kOL7h_Pjo97BSVS5CkSGqExEytBVC2GlEdqaWHPbsix3pqWcogKo1ZTWycRRluDSZEppZbVTOSVxF-eOCVr3G0xJoWI_q78dRzV-m1R6kCJpvO3xkDZisqz5pD-2JFjZt8P9zJXt28z4ARKcZMfWgHhCvOfG99QQ-O547qu9qXmYrZQ17pWfwg-YcMUCzNWuFVglsZ9wtYfnwTYbSa_jv_IA1TMxOB5V82XxpsCud49DTwHYI_4a4j7RvcV-gYeVbbAZ4_9xMQpNZtjNwqbLIlx8yiMuwWTRL9wyoLIsI-2kpHFMZkYporRECWt1Uycs5yvwtw5uOigniaRUgQUopCUUUg-FNEBhBdbr4KZVVhmmb5Fd_fj2L_h-0js_S89OO-01mPHL-v5JztZhcnT_4DZg2jyObob3mwHACNefjYNX8tctsw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Recognizing+Entities+in+Power+News+Texts+Based+on+Dependency+Syntactic+Parsing&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Wu%2C+Yun&rft.au=Liu%2C+Xinru&rft.au=Du%2C+Yan&rft.au=Yang%2C+Jieming&rft.date=2025-11-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=6&rft.spage=1283&rft.epage=1291&rft_id=info:doi/10.20965%2Fjaciii.2025.p1283&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1283
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon