A Method for Recognizing Entities in Power News Texts Based on Dependency Syntactic Parsing
Addressing the challenge that news texts in the power field often contain numerous professional terms and many new terms are generated every year, which are difficult to accurately identify using general named entity recognition methods, this paper proposes an entity recognition model for power text...
Uložené v:
| Vydané v: | Journal of advanced computational intelligence and intelligent informatics Ročník 29; číslo 6; s. 1283 - 1291 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Tokyo
Fuji Technology Press Co. Ltd
20.11.2025
|
| Predmet: | |
| ISSN: | 1343-0130, 1883-8014 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Addressing the challenge that news texts in the power field often contain numerous professional terms and many new terms are generated every year, which are difficult to accurately identify using general named entity recognition methods, this paper proposes an entity recognition model for power texts based on dependency syntactic analysis (SYN-BiLSTM-CRF). This model first generates power text word vectors and inputs them into a forward LSTM for feature extraction. Simultaneously, dependency syntactic parsing is performed on the power text, and the syntactic information vectors are fused with the output of the forward LSTM before being input into a backward LSTM. This enhances the model’s ability to learn inter-word dependency relations by incorporating additional syntactic features. Finally, CRF is employed to obtain the predicted NER labels. The experiments demonstrate that the proposed SYN-BiLSTM-CRF model achieves an F1-score of 85.36% on power-related texts, representing a 2.78% improvement over the baseline BiLSTM-CRF model (82.58%). Additionally, it attains a recall of 89.06%, outperforming the BERT model’s recall (87.59%). These results prove that the proposed method significantly enhances entity recognition accuracy in this specialized domain. |
|---|---|
| AbstractList | Addressing the challenge that news texts in the power field often contain numerous professional terms and many new terms are generated every year, which are difficult to accurately identify using general named entity recognition methods, this paper proposes an entity recognition model for power texts based on dependency syntactic analysis (SYN-BiLSTM-CRF). This model first generates power text word vectors and inputs them into a forward LSTM for feature extraction. Simultaneously, dependency syntactic parsing is performed on the power text, and the syntactic information vectors are fused with the output of the forward LSTM before being input into a backward LSTM. This enhances the model’s ability to learn inter-word dependency relations by incorporating additional syntactic features. Finally, CRF is employed to obtain the predicted NER labels. The experiments demonstrate that the proposed SYN-BiLSTM-CRF model achieves an F1-score of 85.36% on power-related texts, representing a 2.78% improvement over the baseline BiLSTM-CRF model (82.58%). Additionally, it attains a recall of 89.06%, outperforming the BERT model’s recall (87.59%). These results prove that the proposed method significantly enhances entity recognition accuracy in this specialized domain. |
| Author | Wu, Yun Liu, Zhenhong Yang, Jieming Yang, Kai Liu, Xinru Du, Yan Wang, Ziyi |
| Author_xml | – sequence: 1 givenname: Yun orcidid: 0000-0001-5610-5117 surname: Wu fullname: Wu, Yun organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China – sequence: 2 givenname: Xinru surname: Liu fullname: Liu, Xinru organization: Shandong University of Finance and Economics, 40 Shungeng Road, Shizhong District, Jinan, Shandong 250014, China – sequence: 3 givenname: Yan surname: Du fullname: Du, Yan organization: Jilin Meteorological Observation and Protection Center, Jilin Meteorological Service, No.176 Suizhong Road, Lvyuan District, Changchun, Jilin 130000, China – sequence: 4 givenname: Jieming orcidid: 0000-0002-2832-2648 surname: Yang fullname: Yang, Jieming organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China – sequence: 5 givenname: Zhenhong surname: Liu fullname: Liu, Zhenhong organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China – sequence: 6 givenname: Kai orcidid: 0009-0008-3408-4595 surname: Yang fullname: Yang, Kai organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China – sequence: 7 givenname: Ziyi orcidid: 0009-0004-5446-2718 surname: Wang fullname: Wang, Ziyi organization: School of Computer Science, Northeast Electric Power University, No.169 Changchun Road, Chuanying District, Jilin, Jilin 132012, China |
| BookMark | eNotkEtPAjEUhRuDiYj8AVdNXA_2xUxniYiPBJUorlw0M-0dLNF2bIcg_noruDrnJifn3HynqOe8A4TOKRkxUubjy3WlrbXpYONRS5nkR6hPpeSZJFT0kueCZ4RycoKGMa4JSZ7lRNA-epvgB-jevcGND_gZtF85-2PdCs9cZzsLEVuHF34LAT_CNuIlfHcRX1URDPYOX0MLzoDTO_yyc12lO6vxogoxVZyh46b6iDD81wF6vZktp3fZ_On2fjqZZ5qJ9JjUSWvOjdC8NrqomckNaUDnEiSjJB8LA6KEImdM6ErKWpoaZFNQCUUDhA_QxaG3Df5rA7FTa78JLk0qzgpW5iXhRUqxQ0oHH2OARrXBflZhpyhRe47qwFH9cVR7jvwXEOtpYw |
| Cites_doi | 10.18653/v1/2020.findings-emnlp.378 10.20965/jaciii.2023.p1151 10.3390/info13020049 10.1609/aaai.v33i01.33017370 10.1109/ICDSCA53499.2021.9650256 10.18653/v1/N19-1423 10.3115/v1/P14-2050 10.18653/v1/D17-1282 10.1162/tacl_a_00104 10.18653/v1/N16-1030 10.1007/s10462-025-11162-5 10.18653/v1/D17-1209 10.1609/aaai.v34i05.6409 10.18653/v1/D19-1399 |
| ContentType | Journal Article |
| Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
| CorporateAuthor | Editorial Office |
| CorporateAuthor_xml | – name: Editorial Office |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.20965/jaciii.2025.p1283 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 1291 |
| ExternalDocumentID | 10_20965_jaciii_2025_p1283 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2443-8cc24b33d4c3bdc7b2d6d0fec68e8210654de49e76224ca88b8dbe8f718e7fe03 |
| IEDL.DBID | K7- |
| ISSN | 1343-0130 |
| IngestDate | Tue Dec 02 10:02:57 EST 2025 Thu Nov 27 00:51:12 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2443-8cc24b33d4c3bdc7b2d6d0fec68e8210654de49e76224ca88b8dbe8f718e7fe03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2832-2648 0009-0008-3408-4595 0009-0004-5446-2718 0000-0001-5610-5117 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p1283 |
| PQID | 3272969037 |
| PQPubID | 4911628 |
| PageCount | 9 |
| ParticipantIDs | proquest_journals_3272969037 crossref_primary_10_20965_jaciii_2025_p1283 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-20 |
| PublicationDateYYYYMMDD | 2025-11-20 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2025 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2025.p1283-3 key-10.20965/jaciii.2025.p1283-21 key-10.20965/jaciii.2025.p1283-4 key-10.20965/jaciii.2025.p1283-22 key-10.20965/jaciii.2025.p1283-5 key-10.20965/jaciii.2025.p1283-6 key-10.20965/jaciii.2025.p1283-20 key-10.20965/jaciii.2025.p1283-7 key-10.20965/jaciii.2025.p1283-25 key-10.20965/jaciii.2025.p1283-8 key-10.20965/jaciii.2025.p1283-26 key-10.20965/jaciii.2025.p1283-9 key-10.20965/jaciii.2025.p1283-23 key-10.20965/jaciii.2025.p1283-24 key-10.20965/jaciii.2025.p1283-10 key-10.20965/jaciii.2025.p1283-11 key-10.20965/jaciii.2025.p1283-14 key-10.20965/jaciii.2025.p1283-15 key-10.20965/jaciii.2025.p1283-12 key-10.20965/jaciii.2025.p1283-13 key-10.20965/jaciii.2025.p1283-18 key-10.20965/jaciii.2025.p1283-19 key-10.20965/jaciii.2025.p1283-16 key-10.20965/jaciii.2025.p1283-17 key-10.20965/jaciii.2025.p1283-1 key-10.20965/jaciii.2025.p1283-2 |
| References_xml | – ident: key-10.20965/jaciii.2025.p1283-24 doi: 10.18653/v1/2020.findings-emnlp.378 – ident: key-10.20965/jaciii.2025.p1283-5 – ident: key-10.20965/jaciii.2025.p1283-3 – ident: key-10.20965/jaciii.2025.p1283-10 doi: 10.20965/jaciii.2023.p1151 – ident: key-10.20965/jaciii.2025.p1283-20 doi: 10.3390/info13020049 – ident: key-10.20965/jaciii.2025.p1283-1 – ident: key-10.20965/jaciii.2025.p1283-18 doi: 10.1609/aaai.v33i01.33017370 – ident: key-10.20965/jaciii.2025.p1283-13 doi: 10.1109/ICDSCA53499.2021.9650256 – ident: key-10.20965/jaciii.2025.p1283-11 doi: 10.18653/v1/N19-1423 – ident: key-10.20965/jaciii.2025.p1283-16 doi: 10.3115/v1/P14-2050 – ident: key-10.20965/jaciii.2025.p1283-21 – ident: key-10.20965/jaciii.2025.p1283-9 doi: 10.18653/v1/D17-1282 – ident: key-10.20965/jaciii.2025.p1283-23 – ident: key-10.20965/jaciii.2025.p1283-25 – ident: key-10.20965/jaciii.2025.p1283-8 doi: 10.1162/tacl_a_00104 – ident: key-10.20965/jaciii.2025.p1283-6 – ident: key-10.20965/jaciii.2025.p1283-7 doi: 10.18653/v1/N16-1030 – ident: key-10.20965/jaciii.2025.p1283-12 doi: 10.1007/s10462-025-11162-5 – ident: key-10.20965/jaciii.2025.p1283-15 – ident: key-10.20965/jaciii.2025.p1283-17 doi: 10.18653/v1/D17-1209 – ident: key-10.20965/jaciii.2025.p1283-4 – ident: key-10.20965/jaciii.2025.p1283-2 – ident: key-10.20965/jaciii.2025.p1283-14 doi: 10.1609/aaai.v34i05.6409 – ident: key-10.20965/jaciii.2025.p1283-19 doi: 10.18653/v1/D19-1399 – ident: key-10.20965/jaciii.2025.p1283-22 – ident: key-10.20965/jaciii.2025.p1283-26 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.3415504 |
| Snippet | Addressing the challenge that news texts in the power field often contain numerous professional terms and many new terms are generated every year, which are... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1283 |
| SubjectTerms | Accuracy Deep learning Informatics Natural language processing Neural networks Optimization Recall Recognition Semantics Texts Words (language) |
| Title | A Method for Recognizing Entities in Power News Texts Based on Dependency Syntactic Parsing |
| URI | https://www.proquest.com/docview/3272969037 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEF209eDF-onVWvbgTWI3u0mzOUmrLYJYQq0gegjZj0A9pLWtQv31zm42SC9evCSHQAg7s2_eTHbmIXSp4ygH3i09X3FIULRiXpwJ4kmupPTzXIVMWLGJaDTiLy9x4gpuS3esssJEC9RqJk2NvMMo0EBI5Vh0M__wjGqU-bvqJDS2Ud2n1Dd-_hB5lT-FkAoAQ_B_ay7AVUhQ5mCBOUbESNlHQ80MlM57Js1ABwo04HoOuM02Y9UmVNv4M2z898v30Z5jnrhXusoB2tLFIWpUqg7YbfIj9NbDj1ZWGgOfxePygNE3RDg8cPNX8bTAiVFXwwYi8QTwfYn7EA4VnhX4zsnqyjV-Whcr24SFk8wWJY7R83Awub33nASDJyHuM49LuAvGVCCZUDISVHUVybXscs0hW-yGgdJBrAFSaSAzzgVXQvMcIp6Ock3YCaoVs0KfIswVyYBb8EBqEmSSc4D8mDOlRChiktMmuqoWO52XkzZSyFCsadLSNKkxTWpN00StarFTt-uW6e9Kn_39-BztmleZnkJKWqi2WnzqC7Qjv1bT5aKN6v3BKBm3bX7eti4F1yR8_QGtUdLi |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NS-RAEC1cFdaLuq7i99Zh97REe7p7Jp2DiJ8oo8OwO4LgIaY_AnrIjM6ojD_K32h1J0G8ePPgKYdAQ1Iv9V51uuoB_HZJnJPuNlHDKipQnBVRkmkWGWWNaeS5bQodzCbiTkddXibdCXipe2H8sco6J4ZEbfvG75FvC04ykEo5Ee8O7iLvGuX_rtYWGiUs2m78RCXbcOf0kOL7h_Pjo97BSVS5CkSGqExEytBVC2GlEdqaWHPbsix3pqWcogKo1ZTWycRRluDSZEppZbVTOSVxF-eOCVr3G0xJoWI_q78dRzV-m1R6kCJpvO3xkDZisqz5pD-2JFjZt8P9zJXt28z4ARKcZMfWgHhCvOfG99QQ-O547qu9qXmYrZQ17pWfwg-YcMUCzNWuFVglsZ9wtYfnwTYbSa_jv_IA1TMxOB5V82XxpsCud49DTwHYI_4a4j7RvcV-gYeVbbAZ4_9xMQpNZtjNwqbLIlx8yiMuwWTRL9wyoLIsI-2kpHFMZkYporRECWt1Uycs5yvwtw5uOigniaRUgQUopCUUUg-FNEBhBdbr4KZVVhmmb5Fd_fj2L_h-0js_S89OO-01mPHL-v5JztZhcnT_4DZg2jyObob3mwHACNefjYNX8tctsw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Method+for+Recognizing+Entities+in+Power+News+Texts+Based+on+Dependency+Syntactic+Parsing&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Wu%2C+Yun&rft.au=Liu%2C+Xinru&rft.au=Du%2C+Yan&rft.au=Yang%2C+Jieming&rft.date=2025-11-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=6&rft.spage=1283&rft.epage=1291&rft_id=info:doi/10.20965%2Fjaciii.2025.p1283&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1283 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |