A General Survey on Attention Mechanisms in Deep Learning

Attention is an important mechanism that can be employed for a variety of deep learning models across many different domains and tasks. This survey provides an overview of the most important attention mechanisms proposed in the literature. The various attention mechanisms are explained by means of a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on knowledge and data engineering Jg. 35; H. 4; S. 3279 - 3298
Hauptverfasser: Brauwers, Gianni, Frasincar, Flavius
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:1041-4347, 1558-2191
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Attention is an important mechanism that can be employed for a variety of deep learning models across many different domains and tasks. This survey provides an overview of the most important attention mechanisms proposed in the literature. The various attention mechanisms are explained by means of a framework consisting of a general attention model, uniform notation, and a comprehensive taxonomy of attention mechanisms. Furthermore, the various measures for evaluating attention models are reviewed, and methods to characterize the structure of attention models based on the proposed framework are discussed. Last, future work in the field of attention models is considered.
AbstractList Attention is an important mechanism that can be employed for a variety of deep learning models across many different domains and tasks. This survey provides an overview of the most important attention mechanisms proposed in the literature. The various attention mechanisms are explained by means of a framework consisting of a general attention model, uniform notation, and a comprehensive taxonomy of attention mechanisms. Furthermore, the various measures for evaluating attention models are reviewed, and methods to characterize the structure of attention models based on the proposed framework are discussed. Last, future work in the field of attention models is considered.
Author Brauwers, Gianni
Frasincar, Flavius
Author_xml – sequence: 1
  givenname: Gianni
  orcidid: 0000-0001-6550-6588
  surname: Brauwers
  fullname: Brauwers, Gianni
  email: brauwers@ese.eur.nl
  organization: Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, DR, The Netherlands
– sequence: 2
  givenname: Flavius
  orcidid: 0000-0002-8031-758X
  surname: Frasincar
  fullname: Frasincar, Flavius
  email: frasincar@ese.eur.nl
  organization: Erasmus School of Economics, Erasmus University Rotterdam, Rotterdam, DR, The Netherlands
BookMark eNp9kE1PAjEQhhuDiaD-AONlE8-LnX5ujwQQjRgP4rkpy6yWQBfbxYR_724gHjx4mvfwPjOZZ0B6oQ5IyA3QIQA194vnyXTIKIMhB6aEVGekD1IWOQMDvTZTAbngQl-QQUprSmmhC-gTM8pmGDC6Tfa2j994yOqQjZoGQ-Pb9ILlpws-bVPmQzZB3GVzdDH48HFFziu3SXh9mpfk_WG6GD_m89fZ03g0z0smBMud4eDQFKuVKFGoUgoql1QzRQ1osWIoFUUjoAKlAI2kWrCSSsGrJawqp_gluTvu3cX6a4-pset6H0N70jJdCCkp10Xb0sdWGeuUIla29I3rfmii8xsL1HaebOfJdp7syVNLwh9yF_3WxcO_zO2R8Yj42zftT5Ib_gN2eHJx
CODEN ITKEEH
CitedBy_id crossref_primary_10_1016_j_compbiomed_2025_110102
crossref_primary_10_1016_j_compbiomed_2025_110345
crossref_primary_10_1016_j_compositesa_2024_108429
crossref_primary_10_1007_s11760_025_04633_3
crossref_primary_10_3390_rs16071214
crossref_primary_10_1109_ACCESS_2023_3306022
crossref_primary_10_1007_s11004_025_10220_6
crossref_primary_10_1109_ACCESS_2024_3509605
crossref_primary_10_1016_j_oceaneng_2025_120820
crossref_primary_10_1016_j_asoc_2025_112978
crossref_primary_10_3390_app14030978
crossref_primary_10_1109_TITS_2022_3186613
crossref_primary_10_54097_6vbssk40
crossref_primary_10_1364_JOCN_481084
crossref_primary_10_1016_j_phycom_2024_102534
crossref_primary_10_1007_s11071_025_11722_y
crossref_primary_10_1016_j_engstruct_2024_118516
crossref_primary_10_1016_j_ejor_2024_08_024
crossref_primary_10_1080_01431161_2023_2285742
crossref_primary_10_3390_e25030440
crossref_primary_10_1109_TII_2024_3523580
crossref_primary_10_1016_j_rineng_2025_104783
crossref_primary_10_1007_s10489_023_05242_8
crossref_primary_10_1186_s40001_025_03066_5
crossref_primary_10_1016_j_eswa_2025_129446
crossref_primary_10_1016_j_susmat_2025_e01535
crossref_primary_10_1177_09544062241305515
crossref_primary_10_1002_ima_70190
crossref_primary_10_1002_sdtp_18953
crossref_primary_10_1007_s10773_022_05209_4
crossref_primary_10_3390_s25185682
crossref_primary_10_1109_TASE_2025_3592721
crossref_primary_10_1007_s11554_024_01575_w
crossref_primary_10_1016_j_oceaneng_2025_121929
crossref_primary_10_1109_TGRS_2024_3350573
crossref_primary_10_3390_asi6060115
crossref_primary_10_1016_j_saa_2025_126336
crossref_primary_10_3390_rs17010052
crossref_primary_10_1016_j_procs_2025_03_185
crossref_primary_10_1007_s00521_024_10698_x
crossref_primary_10_1109_ACCESS_2023_3296710
crossref_primary_10_1016_j_asoc_2023_110335
crossref_primary_10_1186_s12891_025_08733_6
crossref_primary_10_1016_j_neucom_2024_129255
crossref_primary_10_3390_electronics14142865
crossref_primary_10_46670_JSST_2025_34_4_289
crossref_primary_10_14778_3749646_3749712
crossref_primary_10_1007_s11760_025_04562_1
crossref_primary_10_1109_ACCESS_2024_3513445
crossref_primary_10_3390_s23229155
crossref_primary_10_1016_j_knosys_2025_113538
crossref_primary_10_1016_j_jhydrol_2025_132879
crossref_primary_10_1016_j_patrec_2025_03_024
crossref_primary_10_1177_11779322241272387
crossref_primary_10_1007_s11042_025_20999_5
crossref_primary_10_1109_ACCESS_2025_3546681
crossref_primary_10_3390_electronics13183783
crossref_primary_10_1007_s11771_024_5762_9
crossref_primary_10_1016_j_knosys_2025_113301
crossref_primary_10_1088_1361_6501_ad11c9
crossref_primary_10_1093_gigascience_giae089
crossref_primary_10_1016_j_jfranklin_2025_107511
crossref_primary_10_1002_cpe_70250
crossref_primary_10_1109_TGRS_2024_3374600
crossref_primary_10_3390_rs17060971
crossref_primary_10_1109_JSEN_2024_3400519
crossref_primary_10_1038_s41598_025_16564_7
crossref_primary_10_1016_j_aei_2025_103252
crossref_primary_10_1007_s10489_023_05101_6
crossref_primary_10_1080_1448837X_2025_2557647
crossref_primary_10_4103_ATMR_ATMR_70_25
crossref_primary_10_1016_j_renene_2024_121133
crossref_primary_10_3389_fphys_2025_1512835
crossref_primary_10_1016_j_brainres_2025_149484
crossref_primary_10_1177_09544054251359468
crossref_primary_10_1016_j_measurement_2024_116290
crossref_primary_10_1109_ACCESS_2024_3365349
crossref_primary_10_3390_wevj16090487
crossref_primary_10_1109_TITS_2024_3510678
crossref_primary_10_3390_jmse12060990
crossref_primary_10_1016_j_tws_2024_111797
crossref_primary_10_3390_rs17173026
crossref_primary_10_1016_j_rineng_2024_102397
crossref_primary_10_1038_s41598_025_90607_x
crossref_primary_10_1038_s41598_024_52451_3
crossref_primary_10_1016_j_jksuci_2024_102038
crossref_primary_10_1109_JSEN_2024_3524584
crossref_primary_10_1109_ACCESS_2024_3417422
crossref_primary_10_3390_agriculture14020228
crossref_primary_10_1016_j_ins_2025_122609
crossref_primary_10_1109_TIM_2024_3374311
crossref_primary_10_3389_fphys_2024_1337554
crossref_primary_10_1007_s13735_023_00279_4
crossref_primary_10_1016_j_cose_2025_104509
crossref_primary_10_3390_su17072885
crossref_primary_10_3390_electronics14112241
crossref_primary_10_1109_TKDE_2024_3447878
crossref_primary_10_3390_s25133908
crossref_primary_10_4108_eetsis_8701
crossref_primary_10_1007_s12204_024_2694_3
crossref_primary_10_1109_TGRS_2025_3559590
crossref_primary_10_3389_fpsyt_2023_1310323
crossref_primary_10_1109_ACCESS_2024_3389669
crossref_primary_10_1016_j_tws_2024_112878
crossref_primary_10_3390_en18123057
crossref_primary_10_3390_info14110610
crossref_primary_10_1016_j_neunet_2025_107496
crossref_primary_10_1016_j_sna_2024_115521
crossref_primary_10_1007_s10462_023_10577_2
crossref_primary_10_1016_j_ins_2023_119307
crossref_primary_10_1016_j_autcon_2025_106419
crossref_primary_10_1016_j_renene_2025_123774
crossref_primary_10_1016_j_bspc_2025_107886
crossref_primary_10_1016_j_asoc_2025_113692
crossref_primary_10_3389_fpls_2024_1395796
crossref_primary_10_1016_j_asoc_2025_113326
crossref_primary_10_1016_j_medntd_2025_100382
crossref_primary_10_1007_s10586_025_05343_8
crossref_primary_10_3390_sym17060820
crossref_primary_10_3390_electronics13081454
crossref_primary_10_3390_app15126600
crossref_primary_10_3390_electronics14091818
crossref_primary_10_1016_j_eswa_2025_128287
crossref_primary_10_1038_s41598_024_54114_9
crossref_primary_10_1109_TGRS_2024_3456754
crossref_primary_10_1007_s10115_022_01764_8
crossref_primary_10_1109_TKDE_2024_3386895
crossref_primary_10_1016_j_resconrec_2024_107925
crossref_primary_10_1109_LGRS_2022_3225713
crossref_primary_10_3390_pr13082365
crossref_primary_10_3354_meps14842
crossref_primary_10_3390_rs17020307
crossref_primary_10_1109_TKDE_2024_3382726
crossref_primary_10_1016_j_engappai_2025_110971
crossref_primary_10_1088_2632_2153_ad2e15
crossref_primary_10_1016_j_compeleceng_2024_109520
crossref_primary_10_1016_j_microc_2025_113384
crossref_primary_10_1007_s11063_025_11755_9
crossref_primary_10_3390_fishes10040173
crossref_primary_10_1109_JSTARS_2024_3400407
crossref_primary_10_32604_cmc_2023_032364
crossref_primary_10_3390_a17030109
crossref_primary_10_1007_s11760_024_03759_0
crossref_primary_10_1007_s10598_025_09633_z
crossref_primary_10_1057_s41599_025_04633_1
crossref_primary_10_1080_01431161_2022_2091964
crossref_primary_10_1021_acsestwater_5c00467
crossref_primary_10_1016_j_solener_2025_113769
crossref_primary_10_1016_j_eswa_2023_122887
crossref_primary_10_3390_ijgi13120433
crossref_primary_10_1016_j_mtcomm_2025_113778
crossref_primary_10_3390_electronics12092032
crossref_primary_10_1371_journal_pone_0319776
crossref_primary_10_1007_s10044_024_01276_x
crossref_primary_10_1371_journal_pone_0317355
crossref_primary_10_1016_j_apor_2024_104072
crossref_primary_10_3390_app14052144
crossref_primary_10_1002_ird3_115
crossref_primary_10_1109_TIM_2025_3561378
crossref_primary_10_1038_s41598_025_85139_3
crossref_primary_10_1088_1361_6560_ad8290
crossref_primary_10_3390_computers12080151
crossref_primary_10_1016_j_aei_2024_102925
crossref_primary_10_1007_s12194_024_00875_x
crossref_primary_10_1016_j_nlp_2025_100168
crossref_primary_10_3390_agriculture14020273
crossref_primary_10_3390_app132212421
crossref_primary_10_1109_TGRS_2023_3339291
crossref_primary_10_1016_j_eswa_2025_126691
crossref_primary_10_1371_journal_pone_0312474
crossref_primary_10_1109_TITS_2025_3545942
crossref_primary_10_3390_agronomy13051240
crossref_primary_10_1016_j_eswa_2024_125779
crossref_primary_10_1016_j_knosys_2025_113825
crossref_primary_10_3390_agronomy15020489
crossref_primary_10_1109_TAES_2025_3564932
crossref_primary_10_1007_s11042_024_19479_z
crossref_primary_10_3390_en17071658
crossref_primary_10_3390_ani13223535
crossref_primary_10_1007_s11053_022_10142_8
crossref_primary_10_3390_machines12070492
crossref_primary_10_1016_j_jnca_2024_103903
crossref_primary_10_1080_07421222_2024_2376384
crossref_primary_10_3390_rs16111860
crossref_primary_10_1080_10400419_2024_2361217
crossref_primary_10_1007_s12083_025_02093_7
crossref_primary_10_1016_j_knosys_2024_111457
crossref_primary_10_7717_peerj_cs_2981
crossref_primary_10_1016_j_energy_2025_136265
crossref_primary_10_3390_rs17122058
crossref_primary_10_1016_j_ymssp_2025_113212
crossref_primary_10_1088_1361_6501_ada6ee
crossref_primary_10_1080_10589759_2024_2386349
crossref_primary_10_20965_jaciii_2025_p0868
crossref_primary_10_1088_1402_4896_ad7bfd
crossref_primary_10_3390_en18112902
crossref_primary_10_1016_j_csl_2024_101751
crossref_primary_10_1016_j_eswa_2024_125525
crossref_primary_10_1117_1_JRS_19_026503
crossref_primary_10_3233_JIFS_240531
crossref_primary_10_3389_frai_2025_1579998
crossref_primary_10_1117_1_JRS_19_026506
crossref_primary_10_1016_j_ecoinf_2024_102922
crossref_primary_10_1109_ACCESS_2025_3549796
crossref_primary_10_1109_ACCESS_2024_3458908
crossref_primary_10_1016_j_vehcom_2025_100895
crossref_primary_10_1002_adts_202400479
crossref_primary_10_1007_s40430_025_05457_5
crossref_primary_10_1177_14727978251380830
crossref_primary_10_3390_app15010146
crossref_primary_10_1515_revneuro_2024_0088
crossref_primary_10_1016_j_jenvman_2025_125094
crossref_primary_10_1007_s11144_024_02695_x
crossref_primary_10_1007_s10489_023_04848_2
crossref_primary_10_1016_j_asoc_2024_112262
crossref_primary_10_1016_j_asoc_2025_113750
crossref_primary_10_1016_j_jpowsour_2024_235674
crossref_primary_10_1016_j_jhydrol_2025_133237
crossref_primary_10_1109_TGRS_2025_3594760
crossref_primary_10_3390_biomimetics10010034
crossref_primary_10_1109_ACCESS_2024_3520608
crossref_primary_10_3390_mi14040893
crossref_primary_10_1038_s41598_024_57321_6
crossref_primary_10_1109_JIOT_2025_3576567
crossref_primary_10_3390_s23115204
crossref_primary_10_1007_s10032_025_00545_7
crossref_primary_10_3390_s23104681
crossref_primary_10_3390_f16071192
crossref_primary_10_1109_OJCS_2025_3581950
crossref_primary_10_32604_cmc_2024_054360
crossref_primary_10_1016_j_datak_2024_102332
crossref_primary_10_1016_j_frl_2024_105846
crossref_primary_10_1155_hbe2_5979728
crossref_primary_10_1016_j_eswa_2025_128678
crossref_primary_10_3390_e27040368
crossref_primary_10_1007_s13349_024_00848_z
crossref_primary_10_1186_s13677_023_00483_x
crossref_primary_10_1109_JSTARS_2023_3339294
crossref_primary_10_1016_j_imavis_2024_104926
crossref_primary_10_1016_j_engappai_2023_107270
crossref_primary_10_1109_TVT_2023_3304530
crossref_primary_10_1016_j_ecoinf_2024_102904
crossref_primary_10_1021_jacs_4c10893
crossref_primary_10_3390_electronics13030539
crossref_primary_10_1016_j_apenergy_2024_123947
crossref_primary_10_1162_imag_a_00214
crossref_primary_10_1140_epjp_s13360_024_05287_9
crossref_primary_10_3390_app14156670
crossref_primary_10_1007_s42452_025_06766_z
crossref_primary_10_1016_j_geoen_2025_213762
crossref_primary_10_1109_TIM_2025_3568977
crossref_primary_10_1007_s10489_023_04571_y
crossref_primary_10_1007_s11030_024_11100_7
crossref_primary_10_3390_a17110488
crossref_primary_10_1016_j_apenergy_2025_126368
crossref_primary_10_1109_TGRS_2023_3293832
crossref_primary_10_3389_fnins_2022_920820
crossref_primary_10_3390_ijgi13070222
crossref_primary_10_1016_j_jclepro_2025_145873
crossref_primary_10_1093_comjnl_bxae132
crossref_primary_10_1287_isre_2022_0529
crossref_primary_10_3390_wevj16090541
crossref_primary_10_1109_JSEN_2024_3372298
crossref_primary_10_1007_s00521_025_11557_z
crossref_primary_10_3390_app15010212
crossref_primary_10_1109_ACCESS_2023_3339560
crossref_primary_10_2478_amns_2025_0210
crossref_primary_10_3390_e27040348
crossref_primary_10_1016_j_eswa_2025_126837
crossref_primary_10_1109_ACCESS_2025_3588407
crossref_primary_10_1016_j_ecoinf_2024_102683
crossref_primary_10_3390_rs15215227
crossref_primary_10_1109_JBHI_2024_3355951
crossref_primary_10_3390_s24092925
crossref_primary_10_1007_s10489_022_04048_4
crossref_primary_10_3390_diagnostics14040390
crossref_primary_10_1109_JSEN_2025_3582423
crossref_primary_10_1016_j_ocecoaman_2025_107841
crossref_primary_10_1109_TAES_2024_3449268
crossref_primary_10_1016_j_compag_2023_108352
crossref_primary_10_1016_j_cviu_2025_104304
crossref_primary_10_1016_j_engappai_2025_110218
crossref_primary_10_3390_info16070602
crossref_primary_10_3390_math13152437
crossref_primary_10_1109_LSP_2024_3398358
crossref_primary_10_1088_1674_1056_adce96
Cites_doi 10.1109/CVPR.2018.00911
10.1609/aaai.v32i1.12055
10.1016/j.jvcir.2020.102775
10.1145/3357384.3357895
10.1007/978-3-319-50835-1_22
10.1007/978-3-540-30120-2_59
10.18653/v1/n16-1174
10.1007/bf00992696
10.24963/ijcai.2019/513
10.1007/s10115-020-01513-9
10.18653/v1/D19-1002
10.1109/ICDAR.2019.00061
10.1007/978-3-030-21348-0_24
10.18653/v1/W19-4320
10.18653/v1/D15-1166
10.1016/j.cviu.2017.10.001
10.1007/978-3-030-00937-3_43
10.1109/TNNLS.2018.2869225
10.18653/v1/d18-1380
10.1007/978-3-030-21074-8_4
10.24963/ijcai.2018/546
10.18653/v1/D18-1176
10.1111/coin.12225
10.1109/ICASSP.2016.7472618
10.3115/v1/W14-4012
10.1109/CVPR42600.2020.01009
10.1109/CVPR.2018.00636
10.1109/ICASSP.2019.8683483
10.1109/TMM.2017.2729019
10.18653/v1/D19-1671
10.1109/CVPR.2016.10
10.1609/aaai.v34i05.6250
10.1109/CVPR42600.2020.01059
10.1609/aaai.v32i1.11965
10.1609/aaai.v31i1.11197
10.1109/ICDM.2019.00120
10.18653/v1/P19-1260
10.1109/TKDE.2019.2913394
10.18653/v1/D19-1016
10.21437/Interspeech.2019-2616
10.1007/978-3-030-32236-6_16
10.18653/v1/P18-1162
10.1145/3178876.3186015
10.24963/ijcai.2017/568
10.1007/978-3-030-29513-4_31
10.1145/3465055
10.18653/v1/D17-1151
10.1109/CVPR.2017.648
10.18653/v1/d16-1058
10.1109/TPAMI.2018.2889052
10.1145/3336191.3371845
10.1145/3308558.3313513
10.1145/3308558.3313750
10.1145/3209978.3210009
10.3115/1073083.1073135
10.1609/aaai.v34i05.6211
10.1109/JBHI.2020.2986926
10.1109/TIP.2019.2928634
10.1146/annurev.neuro.26.041002.131047
10.1609/aaai.v32i1.11941
10.3115/1626355.1626362
10.18653/v1/p17-1164
10.18653/v1/2020.acl-main.48
10.18653/v1/W18-5429
10.1145/3530811
10.18653/v1/P19-1345
10.1609/aaai.v32i1.11254
10.1109/ICASSP.2019.8682539
10.1145/3219819.3220086
10.18653/v1/D18-1375
10.1609/aaai.v32i1.11635
10.21437/Interspeech.2017-486
10.1609/aaai.v33i01.33018658
10.1145/3109859.3109890
10.1016/j.image.2003.09.001
10.1609/aaai.v33i01.33019324
10.1609/aaai.v32i1.12048
10.18653/v1/p17-1036
10.1109/ICASSP.2017.7953075
10.1145/3363574
10.24963/ijcai.2018/604
10.18653/v1/w18-2601
10.18653/v1/P18-1240
10.18653/v1/P19-2030
10.18653/v1/2020.acl-main.387
10.1007/978-3-030-01231-1_1
10.18653/v1/P19-1285
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1109/TKDE.2021.3126456
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1558-2191
EndPage 3298
ExternalDocumentID 10_1109_TKDE_2021_3126456
9609539
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
UHB
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2442-a931ae98dd4ce46c5405b072609174d2e560e941f1661e950742c0543fb1dfa63
IEDL.DBID RIE
ISSN 1041-4347
IngestDate Mon Jun 30 06:17:44 EDT 2025
Tue Nov 18 22:27:35 EST 2025
Sat Nov 29 02:36:04 EST 2025
Wed Aug 27 02:18:06 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2442-a931ae98dd4ce46c5405b072609174d2e560e941f1661e950742c0543fb1dfa63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6550-6588
0000-0002-8031-758X
PQID 2784550378
PQPubID 85438
PageCount 20
ParticipantIDs proquest_journals_2784550378
crossref_primary_10_1109_TKDE_2021_3126456
ieee_primary_9609539
crossref_citationtrail_10_1109_TKDE_2021_3126456
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on knowledge and data engineering
PublicationTitleAbbrev TKDE
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References Daniluk (ref23)
ref57
Mnih (ref2)
ref56
ref59
Yu (ref106)
ref58
ref53
ref52
Xu (ref8)
Tay (ref103) 2021; 139
ref51
ref50
Yu (ref25) 2018
Wang (ref46) 2016
ref45
ref48
ref47
Alami Mejjati (ref125)
ref42
Ndajah (ref113)
ref41
ref44
ref43
Veličković (ref31)
ref49
Zhang (ref74)
ref7
Veličković (ref83)
ref9
ref4
ref3
Vaswani (ref13)
ref6
ref5
Zhang (ref80) 2018
ref40
ref34
ref37
Lin (ref71)
ref30
ref33
ref39
ref38
Chen (ref115) 2020
Wang (ref101) 2020
Ba (ref72) 2016
ref24
Graves (ref55) 2014
ref20
Chen (ref95) 2021
Chorowski (ref10)
ref21
ref28
ref27
ref29
Parmar (ref15)
Larochelle (ref1)
Sordoni (ref54) 2016
ref12
Jain (ref120) 2019
ref14
ref97
ref126
ref96
ref11
ref99
ref124
ref98
Zheng (ref36) 2018
ref17
ref16
ref19
Lu (ref32)
ref93
ref92
ref94
ref91
ref89
ref86
ref85
ref88
ref87
Banerjee (ref108)
Wang (ref18) 2016
Galassi (ref22) 2019
Sennrich (ref109)
Oktay (ref67)
ref82
ref81
ref84
ref79
ref78
ref107
ref104
ref105
ref77
ref76
Sharma (ref26) 2016
Kitaev (ref100)
ref111
ref70
ref112
ref73
ref110
ref68
ref119
ref117
ref69
ref118
ref64
ref63
ref116
ref66
ref65
ref114
Seo (ref35)
Sabour (ref90) 2017
ref60
Goodfellow (ref75)
ref122
Wu (ref102)
ref62
ref61
ref121
Thekumparampil (ref123) 2018
References_xml – ident: ref16
  doi: 10.1109/CVPR.2018.00911
– ident: ref47
  doi: 10.1609/aaai.v32i1.12055
– ident: ref63
  doi: 10.1016/j.jvcir.2020.102775
– ident: ref17
  doi: 10.1145/3357384.3357895
– ident: ref114
  doi: 10.1007/978-3-319-50835-1_22
– volume-title: Proc. 6th Int. Conf. Learn. Representations
  ident: ref31
  article-title: Graph attention networks
– ident: ref111
  doi: 10.1007/978-3-540-30120-2_59
– ident: ref5
  doi: 10.18653/v1/n16-1174
– year: 2014
  ident: ref55
  article-title: Neural Turing machines
– ident: ref57
  doi: 10.1007/bf00992696
– ident: ref70
  doi: 10.24963/ijcai.2019/513
– ident: ref93
  doi: 10.1007/s10115-020-01513-9
– ident: ref121
  doi: 10.18653/v1/D19-1002
– ident: ref65
  doi: 10.1109/ICDAR.2019.00061
– ident: ref43
  doi: 10.1007/978-3-030-21348-0_24
– ident: ref52
  doi: 10.18653/v1/W19-4320
– start-page: 65
  volume-title: Proc. Workshop Intrinsic Extrinsic Eval. Measures Mach. Transl. Summarization
  ident: ref108
  article-title: METEOR: An automatic metric for MT evaluation with improved correlation with human judgments
– start-page: 577
  volume-title: Proc. 28th Annu. Conf. Neural Inf. Process. Syst.
  ident: ref10
  article-title: Attention-based models for speech recognition
– ident: ref4
  doi: 10.18653/v1/D15-1166
– ident: ref118
  doi: 10.1016/j.cviu.2017.10.001
– ident: ref124
  doi: 10.1007/978-3-030-00937-3_43
– start-page: 4055
  volume-title: Proc. 35th Int. Conf. Mach. Learn.
  ident: ref15
  article-title: Image Transformer
– ident: ref30
  doi: 10.1109/TNNLS.2018.2869225
– ident: ref33
  doi: 10.18653/v1/d18-1380
– ident: ref77
  doi: 10.1007/978-3-030-21074-8_4
– year: 2020
  ident: ref101
  article-title: Linformer: Self-attention with linear complexity
– ident: ref28
  doi: 10.24963/ijcai.2018/546
– year: 2018
  ident: ref36
  article-title: Left-center-right separated neural network for aspect-based sentiment analysis with rotatory attention
– ident: ref50
  doi: 10.18653/v1/D18-1176
– ident: ref53
  doi: 10.1111/coin.12225
– ident: ref11
  doi: 10.1109/ICASSP.2016.7472618
– ident: ref14
  doi: 10.3115/v1/W14-4012
– ident: ref73
  doi: 10.1109/CVPR42600.2020.01009
– start-page: 539
  volume-title: Proc. 13th Conf. Eur. Chapter Assoc. Comput. Linguistics
  ident: ref109
  article-title: Perplexity minimization for translation model domain adaptation in statistical machine translation
– ident: ref7
  doi: 10.1109/CVPR.2018.00636
– ident: ref87
  doi: 10.1109/ICASSP.2019.8683483
– volume: 139
  start-page: 10183
  year: 2021
  ident: ref103
  article-title: Synthesizer: Rethinking self-attention for transformer models
  publication-title: Proc. 38th Int. Conf. Mach. Learn.
– volume-title: Proc. 5th Int. Conf. Learn. Representations
  ident: ref23
  article-title: Frustratingly short attention spans in neural language modeling
– ident: ref27
  doi: 10.1109/TMM.2017.2729019
– ident: ref92
  doi: 10.18653/v1/D19-1671
– ident: ref88
  doi: 10.1109/CVPR.2016.10
– ident: ref69
  doi: 10.1609/aaai.v34i05.6250
– start-page: 2672
  volume-title: Proc. 27th Annu. Conf. Neural Inf. Process. Syst.
  ident: ref75
  article-title: Generative adversarial nets
– ident: ref94
  doi: 10.1109/CVPR42600.2020.01059
– volume-title: Proc. 4th Int. Conf. Learn. Representations
  ident: ref35
  article-title: Bidirectional attention flow for machine comprehension
– ident: ref48
  doi: 10.1609/aaai.v32i1.11965
– ident: ref117
  doi: 10.1609/aaai.v31i1.11197
– volume-title: Proc. 5th Int. Conf. Learn. Representations
  ident: ref71
  article-title: A structured self-attentive sentence embedding
– ident: ref38
  doi: 10.1109/ICDM.2019.00120
– year: 2019
  ident: ref22
  article-title: Attention, please! a critical review of neural attention models in natural language processing
– year: 2018
  ident: ref123
  article-title: Attention-based graph neural network for semi-supervised learning
– ident: ref41
  doi: 10.18653/v1/P19-1260
– volume-title: Proc. 1st Med. Imag. Deep Learn. Conf.
  ident: ref67
  article-title: Attention U-Net: Learning where to look for the pancreas
– start-page: 2204
  volume-title: Proc. 27th Annu. Conf. Neural Inf. Process. Syst.
  ident: ref2
  article-title: Recurrent models of visual attention
– ident: ref45
  doi: 10.1109/TKDE.2019.2913394
– ident: ref96
  doi: 10.18653/v1/D19-1016
– ident: ref91
  doi: 10.21437/Interspeech.2019-2616
– ident: ref68
  doi: 10.1007/978-3-030-32236-6_16
– ident: ref66
  doi: 10.18653/v1/P18-1162
– start-page: 3693
  volume-title: Proc. 32nd Annu. Conf. Neural Inf. Process. Syst.
  ident: ref125
  article-title: Unsupervised attention-guided image-to-image translation
– ident: ref89
  doi: 10.1145/3178876.3186015
– year: 2018
  ident: ref80
  article-title: Next item recommendation with self-attention
– start-page: 1243
  volume-title: Proc. 24th Annu. Conf. Neural Inf. Process. Syst.
  ident: ref1
  article-title: Learning to combine foveal glimpses with a third-order Boltzmann machine
– ident: ref34
  doi: 10.24963/ijcai.2017/568
– ident: ref21
  doi: 10.1007/978-3-030-29513-4_31
– ident: ref20
  doi: 10.1145/3465055
– year: 2020
  ident: ref115
  article-title: Residual attention U-net for automated multi-class segmentation of COVID-19 chest CT images
– ident: ref56
  doi: 10.18653/v1/D17-1151
– ident: ref119
  doi: 10.1109/CVPR.2017.648
– ident: ref6
  doi: 10.18653/v1/d16-1058
– start-page: 7354
  volume-title: Proc. 36th Int. Conf. Mach. Learn.
  ident: ref74
  article-title: Self-attention generative adversarial networks
– ident: ref79
  doi: 10.1109/TPAMI.2018.2889052
– ident: ref82
  doi: 10.1145/3336191.3371845
– ident: ref40
  doi: 10.1145/3308558.3313513
– ident: ref98
  doi: 10.1145/3308558.3313750
– ident: ref85
  doi: 10.1145/3209978.3210009
– ident: ref107
  doi: 10.3115/1073083.1073135
– ident: ref60
  doi: 10.1609/aaai.v34i05.6211
– start-page: 5998
  volume-title: Proc. 31st Annu. Conf. Neural Inf. Process. Syst.
  ident: ref13
  article-title: Attention is all you need
– ident: ref76
  doi: 10.1109/JBHI.2020.2986926
– ident: ref49
  doi: 10.1109/TIP.2019.2928634
– ident: ref3
  doi: 10.1146/annurev.neuro.26.041002.131047
– ident: ref64
  doi: 10.1609/aaai.v32i1.11941
– start-page: 53
  volume-title: Proc. 3rd WSEAS Int. Conf. Vis. Imaging Simul.
  ident: ref113
  article-title: SSIM image quality metric for denoised images
– volume-title: Proc. 6th Int. Conf. Learn. Representations
  ident: ref106
  article-title: QANet: Combining local convolution with global self-attention for reading comprehension
– ident: ref110
  doi: 10.3115/1626355.1626362
– ident: ref116
  doi: 10.18653/v1/p17-1164
– ident: ref42
  doi: 10.18653/v1/2020.acl-main.48
– start-page: 289
  volume-title: Proc. 30th Annu. Conf. Neural Inf. Process. Syst.
  ident: ref32
  article-title: Hierarchical question-image co-attention for visual question answering
– ident: ref81
  doi: 10.18653/v1/W18-5429
– ident: ref104
  doi: 10.1145/3530811
– ident: ref62
  doi: 10.18653/v1/P19-1345
– year: 2016
  ident: ref46
  article-title: Hierarchical attention network for action recognition in videos
– ident: ref44
  doi: 10.1609/aaai.v32i1.11254
– year: 2021
  ident: ref95
  article-title: TransUnet: Transformers make strong encoders for medical image segmentation
– ident: ref78
  doi: 10.1109/ICASSP.2019.8682539
– ident: ref39
  doi: 10.1145/3219819.3220086
– ident: ref51
  doi: 10.18653/v1/D18-1375
– ident: ref29
  doi: 10.1609/aaai.v32i1.11635
– start-page: 3543
  year: 2019
  ident: ref120
  article-title: Attention is not explanation
  publication-title: Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics: Hum. Language Technol.
– year: 2016
  ident: ref18
  article-title: Survey on the attention based RNN model and its applications in computer vision
– ident: ref24
  doi: 10.21437/Interspeech.2017-486
– ident: ref105
  doi: 10.1609/aaai.v33i01.33018658
– ident: ref61
  doi: 10.1145/3109859.3109890
– ident: ref112
  doi: 10.1016/j.image.2003.09.001
– ident: ref97
  doi: 10.1609/aaai.v33i01.33019324
– ident: ref9
  doi: 10.1609/aaai.v32i1.12048
– ident: ref126
  doi: 10.18653/v1/p17-1036
– ident: ref12
  doi: 10.1109/ICASSP.2017.7953075
– ident: ref19
  doi: 10.1145/3363574
– ident: ref58
  doi: 10.24963/ijcai.2018/604
– start-page: 2048
  volume-title: Proc. 32nd Int. Conf. Mach. Learn.
  ident: ref8
  article-title: Show, attend and tell: Neural image caption generation with visual attention
– volume-title: Proc. 8th Int. Conf. Learn. Representations
  ident: ref102
  article-title: Lite transformer with long-short range attention
– start-page: 3859
  year: 2017
  ident: ref90
  article-title: Dynamic routing between capsules
  publication-title: Proc. 31st Annu. Conf. Neural Inf. Process. Syst.
– year: 2016
  ident: ref72
  article-title: Layer normalization
– ident: ref86
  doi: 10.18653/v1/w18-2601
– ident: ref37
  doi: 10.18653/v1/P18-1240
– year: 2016
  ident: ref54
  article-title: Iterative alternating neural attention for machine reading
– volume-title: Proc. 5th Int. Conf. Learn. Representations
  ident: ref83
  article-title: Graph attention networks
– ident: ref84
  doi: 10.18653/v1/P19-2030
– volume-title: Proc. 8th Int. Conf. Learn. Representations
  ident: ref100
  article-title: Reformer: The efficient Transformer
– ident: ref122
  doi: 10.18653/v1/2020.acl-main.387
– start-page: 188
  year: 2018
  ident: ref25
  article-title: Multi-level attention model for weakly supervised audio classification
  publication-title: Proc. Detection Classification Acoustic Scenes Events Workshop
– ident: ref59
  doi: 10.1007/978-3-030-01231-1_1
– year: 2016
  ident: ref26
  article-title: Action recognition using visual attention
  publication-title: Proc. 4th Int. Conf. Learn. Representations Workshop
– ident: ref99
  doi: 10.18653/v1/P19-1285
SSID ssj0008781
Score 2.7414463
Snippet Attention is an important mechanism that can be employed for a variety of deep learning models across many different domains and tasks. This survey provides an...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 3279
SubjectTerms Attention models
Biological system modeling
Computational modeling
Data models
Deep learning
Feature extraction
introductory and survey
neural nets
supervised learning
Task analysis
Taxonomy
Title A General Survey on Attention Mechanisms in Deep Learning
URI https://ieeexplore.ieee.org/document/9609539
https://www.proquest.com/docview/2784550378
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2191
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008781
  issn: 1041-4347
  databaseCode: RIE
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1BS8MwFH5sw4MenG6K0yk5eBLr1jZrmuNwG4I6BCfsVtr0VQbaja0b-O99abMyUARvPSRQ3tfkfV-T9z6Aa49IiBKOsgQSDJyH3Ap9rVodobxQROiJvFD4SYzH_nQqXypwW9bCIGJ--Qzv9GN-lh_P1Vr_KusU3dFkFapCeEWtVrnr-iI3JCV1QZrI5cKcYNpd2Zk8DoakBB2bBCrlf-1VvZODclOVHztxnl5G9f-92BEcGhrJ-gXux1DBtAH1rUUDMyu2AQc7_QabIPvMtJlmr-vlBr_YPGX9LCuuPLJn1GXAs9Xnis1SNkBcMNN-9f0E3kbDyf2DZbwTLEUJ27FC6dohSj-OuULuKU3Moq4g9UL6jMcOEtNBye3EpgSNsqclsiL65iaRHSeh555CLZ2neAYs6kVhTCwq9DnJKZVErh9JghaVS3TNVS3obqMZKNNYXPtbfAS5wOjKQAMQaAACA0ALbsopi6Krxl-Dmzri5UAT7Ba0t5AFZt2tAn2MSprLFf7577MuYF8bxhd3b9pQy5ZrvIQ9tclmq-VV_kl9A4YwxYo
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NS8NAEB1qFdSD1apYrboHT2Jsk2yz2WOxLZV-IFiht5BsplLQtPQL_PfOJttSUARvOexCmJfdeS-7Mw_gziMSooSjLIEEA-cht0Jfq1ZHKC8UEXoiLRTuin7fHw7lSw4eNrUwiJhePsNH_Zie5ccTtdS_yipZdzS5A7vaOctUa232XV-klqSkL0gVuVyYM0y7KiuDTqNJWtCxSaISA9Bu1VtZKLVV-bEXpwmmVfjfqx3DkSGSrJ4hfwI5TIpQWJs0MLNmi3C41XHwFGSdmUbT7HU5W-EXmySsvlhklx5ZD3Uh8Hj-OWfjhDUQp8w0YH0_g7dWc_DUtox7gqUoZTtWKF07ROnHMVfIPaWpWVQVpF9IofHYQeI6KLk9silFo6xpkayIwLmjyI5HoeeeQz6ZJHgBLKpFYUw8KvQ5CSo1ilw_kgQuKpcIm6tKUF1HM1Cmtbh2uPgIUolRlYEGINAABAaAEtxvpkyzvhp_DT7VEd8MNMEuQXkNWWBW3jzQB6mkulzhX_4-6xb224NeN-g-9ztXcKDt47ObOGXIL2ZLvIY9tVqM57Ob9PP6Bv_SyNM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+General+Survey+on+Attention+Mechanisms+in+Deep+Learning&rft.jtitle=IEEE+transactions+on+knowledge+and+data+engineering&rft.au=Brauwers%2C+Gianni&rft.au=Frasincar%2C+Flavius&rft.date=2023-04-01&rft.pub=IEEE&rft.issn=1041-4347&rft.volume=35&rft.issue=4&rft.spage=3279&rft.epage=3298&rft_id=info:doi/10.1109%2FTKDE.2021.3126456&rft.externalDocID=9609539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1041-4347&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1041-4347&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1041-4347&client=summon