Dual-Branch Residual Network for Enhanced Steel Plate Fault Detection

Steel plate fault detection plays a crucial role in industrial manufacturing. However, the inherent complexity of steel plate fault data and the redundancy of certain features pose significant challenges for effective feature extraction. To address these challenges, we propose a dual-branch residual...

Full description

Saved in:
Bibliographic Details
Published in:Journal of advanced computational intelligence and intelligent informatics Vol. 29; no. 6; pp. 1311 - 1318
Main Authors: Chen, Hao, Lu, Jiaxin
Format: Journal Article
Language:English
Published: Tokyo Fuji Technology Press Co. Ltd 20.11.2025
Subjects:
ISSN:1343-0130, 1883-8014
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Steel plate fault detection plays a crucial role in industrial manufacturing. However, the inherent complexity of steel plate fault data and the redundancy of certain features pose significant challenges for effective feature extraction. To address these challenges, we propose a dual-branch residual network model (DRNM), which utilizes a two-branch architecture. The first branch processes the original data through a convolutional neural network to capture local feature details, and the second branch leverages feature mapping to extract the spatial relationships within the data. To enhance feature extraction depth and model performance, residual networks are integrated into both branches, allowing for deeper network training and the capture of richer feature representations. The proposed dual feature extraction mechanism significantly improves the model’s representational power and fault-detection accuracy. Experimental results on a public dataset demonstrate that DRNM achieves state-of-the-art performance, with average recall and F1 score of 90.11% and 90.79%, respectively, substantially outperforming existing methods.
AbstractList Steel plate fault detection plays a crucial role in industrial manufacturing. However, the inherent complexity of steel plate fault data and the redundancy of certain features pose significant challenges for effective feature extraction. To address these challenges, we propose a dual-branch residual network model (DRNM), which utilizes a two-branch architecture. The first branch processes the original data through a convolutional neural network to capture local feature details, and the second branch leverages feature mapping to extract the spatial relationships within the data. To enhance feature extraction depth and model performance, residual networks are integrated into both branches, allowing for deeper network training and the capture of richer feature representations. The proposed dual feature extraction mechanism significantly improves the model’s representational power and fault-detection accuracy. Experimental results on a public dataset demonstrate that DRNM achieves state-of-the-art performance, with average recall and F1 score of 90.11% and 90.79%, respectively, substantially outperforming existing methods.
Author Chen, Hao
Lu, Jiaxin
Author_xml – sequence: 1
  givenname: Hao
  orcidid: 0009-0005-6986-4805
  surname: Chen
  fullname: Chen, Hao
  organization: School of Information Engineering, Nantong Institute of Technology, 211 Yongxing Road, Chongchuan District, Nantong, Jiangsu 226002, China
– sequence: 2
  givenname: Jiaxin
  orcidid: 0009-0004-9070-0381
  surname: Lu
  fullname: Lu, Jiaxin
  organization: School of Information Engineering, Nantong Institute of Technology, 211 Yongxing Road, Chongchuan District, Nantong, Jiangsu 226002, China
BookMark eNotkElPwzAQhS1UJErpH-BkiXOKtzjOEboAUgWI5Wx5GaspIQlOIsS_x7Sc5r2Zp5nRd44mTdsAQpeULBgpZX69N66qqmRYvugop_QETalSPFOEiknSXPCMUE7O0Lzv94QkzSQRdIrWq9HU2W00jdvhF-grnzx-hOG7jR84tBGvm10agsevA0CNn2szAN6YsR7wCgZwQ9U2F-g0mLqH-X-doffN-m15n22f7h6WN9vMMSFo5m0pvLJKFDZYVihrFOGc-NwzH3JrQVgj089OqhB4IJIHcKkZuARbOMpn6Oq4t4vt1wj9oPftGJt0UnNWsFKWRMmUYseUi23fRwi6i9WniT-aEn0gpo_E9B8xfSDGfwEoXWGo
Cites_doi 10.18280/mmep.111113
10.1109/TIM.2023.3267340
10.1016/j.rineng.2025.103972
10.1016/j.patcog.2024.110979
10.3390/electronics11081200
10.18100/ijamec.1253191
10.3390/met9020155
10.1016/j.measurement.2024.115189
10.1016/j.measurement.2024.115662
10.1016/j.commatsci.2023.112579
10.1016/j.aei.2024.102964
10.1007/978-981-97-6934-6_55
10.3390/machines10070523
10.1007/s11668-023-01817-2
10.1049/ipr2.12715
10.1007/s13369-024-09905-7
10.1016/j.patrec.2024.11.024
10.3109/10826089809115875
10.1109/CACRE62362.2024.10635031
10.1007/978-981-19-8851-6_41-1
10.1088/1361-6501/ac7034
10.3390/machines11070679
10.1016/j.compeleceng.2024.109916
10.1504/IJMMS.2022.127211
10.1080/10589759.2024.2406448
10.1007/s10845-023-02149-6
ContentType Journal Article
Copyright Copyright © 2025 Fuji Technology Press Ltd.
Copyright_xml – notice: Copyright © 2025 Fuji Technology Press Ltd.
CorporateAuthor Editorial Office
CorporateAuthor_xml – name: Editorial Office
DBID AAYXX
CITATION
7SC
7SP
8FD
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.20965/jaciii.2025.p1311
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Computer Science Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1883-8014
EndPage 1318
ExternalDocumentID 10_20965_jaciii_2025_p1311
GroupedDBID AAYXX
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
BENPR
BGLVJ
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
ISHAI
JSI
JSP
K7-
P2P
PHGZM
PHGZT
PQGLB
RJT
RZJ
TUS
7SC
7SP
8FD
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
L7M
L~C
L~D
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c2441-db94d8b847bfb278ba80330d5d2df5bbe4ba6801c68ff3f063fece4bf36eb7c13
IEDL.DBID K7-
ISSN 1343-0130
IngestDate Tue Dec 02 10:00:55 EST 2025
Thu Nov 27 00:51:13 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2441-db94d8b847bfb278ba80330d5d2df5bbe4ba6801c68ff3f063fece4bf36eb7c13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-9070-0381
0009-0005-6986-4805
OpenAccessLink https://doi.org/10.20965/jaciii.2025.p1311
PQID 3272969086
PQPubID 4911628
PageCount 8
ParticipantIDs proquest_journals_3272969086
crossref_primary_10_20965_jaciii_2025_p1311
PublicationCentury 2000
PublicationDate 2025-11-20
PublicationDateYYYYMMDD 2025-11-20
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-20
  day: 20
PublicationDecade 2020
PublicationPlace Tokyo
PublicationPlace_xml – name: Tokyo
PublicationTitle Journal of advanced computational intelligence and intelligent informatics
PublicationYear 2025
Publisher Fuji Technology Press Co. Ltd
Publisher_xml – name: Fuji Technology Press Co. Ltd
References key-10.20965/jaciii.2025.p1311-20
key-10.20965/jaciii.2025.p1311-24
key-10.20965/jaciii.2025.p1311-23
key-10.20965/jaciii.2025.p1311-22
key-10.20965/jaciii.2025.p1311-21
key-10.20965/jaciii.2025.p1311-28
key-10.20965/jaciii.2025.p1311-27
key-10.20965/jaciii.2025.p1311-26
key-10.20965/jaciii.2025.p1311-25
key-10.20965/jaciii.2025.p1311-8
key-10.20965/jaciii.2025.p1311-7
key-10.20965/jaciii.2025.p1311-6
key-10.20965/jaciii.2025.p1311-5
key-10.20965/jaciii.2025.p1311-9
key-10.20965/jaciii.2025.p1311-4
key-10.20965/jaciii.2025.p1311-13
key-10.20965/jaciii.2025.p1311-3
key-10.20965/jaciii.2025.p1311-12
key-10.20965/jaciii.2025.p1311-2
key-10.20965/jaciii.2025.p1311-11
key-10.20965/jaciii.2025.p1311-1
key-10.20965/jaciii.2025.p1311-10
key-10.20965/jaciii.2025.p1311-17
key-10.20965/jaciii.2025.p1311-16
key-10.20965/jaciii.2025.p1311-15
key-10.20965/jaciii.2025.p1311-14
key-10.20965/jaciii.2025.p1311-19
key-10.20965/jaciii.2025.p1311-18
References_xml – ident: key-10.20965/jaciii.2025.p1311-22
  doi: 10.18280/mmep.111113
– ident: key-10.20965/jaciii.2025.p1311-12
  doi: 10.1109/TIM.2023.3267340
– ident: key-10.20965/jaciii.2025.p1311-19
  doi: 10.1016/j.rineng.2025.103972
– ident: key-10.20965/jaciii.2025.p1311-2
  doi: 10.1016/j.patcog.2024.110979
– ident: key-10.20965/jaciii.2025.p1311-25
  doi: 10.3390/electronics11081200
– ident: key-10.20965/jaciii.2025.p1311-6
  doi: 10.18100/ijamec.1253191
– ident: key-10.20965/jaciii.2025.p1311-9
  doi: 10.3390/met9020155
– ident: key-10.20965/jaciii.2025.p1311-11
  doi: 10.1016/j.measurement.2024.115189
– ident: key-10.20965/jaciii.2025.p1311-13
  doi: 10.1016/j.measurement.2024.115662
– ident: key-10.20965/jaciii.2025.p1311-28
  doi: 10.1016/j.commatsci.2023.112579
– ident: key-10.20965/jaciii.2025.p1311-14
  doi: 10.1016/j.aei.2024.102964
– ident: key-10.20965/jaciii.2025.p1311-4
  doi: 10.1007/978-981-97-6934-6_55
– ident: key-10.20965/jaciii.2025.p1311-16
– ident: key-10.20965/jaciii.2025.p1311-18
  doi: 10.3390/machines10070523
– ident: key-10.20965/jaciii.2025.p1311-10
  doi: 10.1007/s11668-023-01817-2
– ident: key-10.20965/jaciii.2025.p1311-17
  doi: 10.1049/ipr2.12715
– ident: key-10.20965/jaciii.2025.p1311-26
  doi: 10.1007/s13369-024-09905-7
– ident: key-10.20965/jaciii.2025.p1311-24
– ident: key-10.20965/jaciii.2025.p1311-21
  doi: 10.1016/j.patrec.2024.11.024
– ident: key-10.20965/jaciii.2025.p1311-27
  doi: 10.3109/10826089809115875
– ident: key-10.20965/jaciii.2025.p1311-8
  doi: 10.1109/CACRE62362.2024.10635031
– ident: key-10.20965/jaciii.2025.p1311-15
  doi: 10.1007/978-981-19-8851-6_41-1
– ident: key-10.20965/jaciii.2025.p1311-23
  doi: 10.1088/1361-6501/ac7034
– ident: key-10.20965/jaciii.2025.p1311-5
  doi: 10.3390/machines11070679
– ident: key-10.20965/jaciii.2025.p1311-20
  doi: 10.1016/j.compeleceng.2024.109916
– ident: key-10.20965/jaciii.2025.p1311-3
  doi: 10.1504/IJMMS.2022.127211
– ident: key-10.20965/jaciii.2025.p1311-7
  doi: 10.1080/10589759.2024.2406448
– ident: key-10.20965/jaciii.2025.p1311-1
  doi: 10.1007/s10845-023-02149-6
SSID ssj0001326041
ssib051641541
Score 2.3410418
Snippet Steel plate fault detection plays a crucial role in industrial manufacturing. However, the inherent complexity of steel plate fault data and the redundancy of...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 1311
SubjectTerms Accuracy
Algorithms
Aluminum
Artificial neural networks
Datasets
Fault detection
Feature extraction
Informatics
Machine learning
Manufacturing
Neural networks
Principal components analysis
Product reliability
Steel plates
Title Dual-Branch Residual Network for Enhanced Steel Plate Fault Detection
URI https://www.proquest.com/docview/3272969086
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib051641541
  issn: 1343-0130
  databaseCode: M~E
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: P5Z
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: K7-
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1883-8014
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001326041
  issn: 1343-0130
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609eDF-sRn2YM3WZvsbh49idoWQSilKhQvYZ9UKWm1qb_f2U1C6cWLhwSSwBJ2Zme-mZ2dD6HrOJZK8kgQmlBFuBYBEYq6YgcmAx1ZJoTyZBPJcJhOJt1RlXBbVmWVtU30hlrPlcuRdxgM1oVQLo3vFl_EsUa53dWKQmMbNUNKQ6fnzwmp9SmCUAAQQrjOuQBWCXgZg3FXRsSC8hwNdT1QOp9CuYYOFGDA7cK1odn0VZum2vufQeu_f76P9irkie9LVTlAWyY_RK2a1QFXi_wI9XsrMSMPjnBjisdm6U9r4WFZLo4B4-J-PvV1A_ilMGaGRzPAq3ggVrMC90zha7vyY_Q26L8-PpGKbIGAaHhItOxynUpwVtJKmqRSpAFjIC5NtY2kNFyKGNyZilNrmQVkY42Cl5bFRiYqZCeokc9zc4pwxHkiHIeH1QnXoUxTG7IELgpPjHXP0E09rdmi7KmRQSzihZCVQsicEDIvhDN0WU9rVq2vZbae0_O_P1-gXTeUOz1Ig0vUKL5X5grtqJ_iY_ndRs2H_nA0bvtIvO2VB-6j6P0XJ37JsQ
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2lAalcCFAQgUL3ACdkau-uvw4VakmiRC1RRItUcXH3UwFFTkgcEH-qv5HZta2qF2499OCDbWll--3OzFvPzAN4lyRSSR6LgKZUBVyLMBCKumQHJkMdWyaE8mIT6XSaXV7msw5ct7UwLq2ytYneUOulcnvkhwwHy5HKZcmn1a_AqUa5v6uthEY9LU7N3z9I2TZHkwHi-57S0fDi8zhoVAUCfAYeBVrmXGcSrbK0kqaZFFmIpF7HmmobS2m4FAnabZVk1jKLLtwahRctS4xMVcRw3B14wDmSJVw_s_h7O39jpB4YkUQ3ezwYG4W85nzcpS2xsK7boa7nyuFPoVwDCYphx8eVa3tz2zfedg3e34169-1LPYHHTWRNjuul8BQ6pnwGvVa1gjRGbA-Gg61YBCdOUGROvpqNr0Yj0zodnmAMT4bl3OdFkPPKmAWZLTAeJyOxXVRkYCqfu1Y-h2938jIvoFsuS_MSSMx5KpxGidUp15HMMhuxFA-KZ4zlffjQwlis6p4hBXItD3pRg1440AsPeh_2WxiLxn5sihsMX_3_9gHsji--nBVnk-npa3jkhnWVkjTch2613po38FD9rn5s1m_9VCVwddeI_wNVxyZQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Branch+Residual+Network+for+Enhanced+Steel+Plate+Fault+Detection&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Chen%2C+Hao&rft.au=Lu%2C+Jiaxin&rft.date=2025-11-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=6&rft.spage=1311&rft.epage=1318&rft_id=info:doi/10.20965%2Fjaciii.2025.p1311&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1311
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon