Dual-Branch Residual Network for Enhanced Steel Plate Fault Detection
Steel plate fault detection plays a crucial role in industrial manufacturing. However, the inherent complexity of steel plate fault data and the redundancy of certain features pose significant challenges for effective feature extraction. To address these challenges, we propose a dual-branch residual...
Saved in:
| Published in: | Journal of advanced computational intelligence and intelligent informatics Vol. 29; no. 6; pp. 1311 - 1318 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Tokyo
Fuji Technology Press Co. Ltd
20.11.2025
|
| Subjects: | |
| ISSN: | 1343-0130, 1883-8014 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Steel plate fault detection plays a crucial role in industrial manufacturing. However, the inherent complexity of steel plate fault data and the redundancy of certain features pose significant challenges for effective feature extraction. To address these challenges, we propose a dual-branch residual network model (DRNM), which utilizes a two-branch architecture. The first branch processes the original data through a convolutional neural network to capture local feature details, and the second branch leverages feature mapping to extract the spatial relationships within the data. To enhance feature extraction depth and model performance, residual networks are integrated into both branches, allowing for deeper network training and the capture of richer feature representations. The proposed dual feature extraction mechanism significantly improves the model’s representational power and fault-detection accuracy. Experimental results on a public dataset demonstrate that DRNM achieves state-of-the-art performance, with average recall and F1 score of 90.11% and 90.79%, respectively, substantially outperforming existing methods. |
|---|---|
| AbstractList | Steel plate fault detection plays a crucial role in industrial manufacturing. However, the inherent complexity of steel plate fault data and the redundancy of certain features pose significant challenges for effective feature extraction. To address these challenges, we propose a dual-branch residual network model (DRNM), which utilizes a two-branch architecture. The first branch processes the original data through a convolutional neural network to capture local feature details, and the second branch leverages feature mapping to extract the spatial relationships within the data. To enhance feature extraction depth and model performance, residual networks are integrated into both branches, allowing for deeper network training and the capture of richer feature representations. The proposed dual feature extraction mechanism significantly improves the model’s representational power and fault-detection accuracy. Experimental results on a public dataset demonstrate that DRNM achieves state-of-the-art performance, with average recall and F1 score of 90.11% and 90.79%, respectively, substantially outperforming existing methods. |
| Author | Chen, Hao Lu, Jiaxin |
| Author_xml | – sequence: 1 givenname: Hao orcidid: 0009-0005-6986-4805 surname: Chen fullname: Chen, Hao organization: School of Information Engineering, Nantong Institute of Technology, 211 Yongxing Road, Chongchuan District, Nantong, Jiangsu 226002, China – sequence: 2 givenname: Jiaxin orcidid: 0009-0004-9070-0381 surname: Lu fullname: Lu, Jiaxin organization: School of Information Engineering, Nantong Institute of Technology, 211 Yongxing Road, Chongchuan District, Nantong, Jiangsu 226002, China |
| BookMark | eNotkElPwzAQhS1UJErpH-BkiXOKtzjOEboAUgWI5Wx5GaspIQlOIsS_x7Sc5r2Zp5nRd44mTdsAQpeULBgpZX69N66qqmRYvugop_QETalSPFOEiknSXPCMUE7O0Lzv94QkzSQRdIrWq9HU2W00jdvhF-grnzx-hOG7jR84tBGvm10agsevA0CNn2szAN6YsR7wCgZwQ9U2F-g0mLqH-X-doffN-m15n22f7h6WN9vMMSFo5m0pvLJKFDZYVihrFOGc-NwzH3JrQVgj089OqhB4IJIHcKkZuARbOMpn6Oq4t4vt1wj9oPftGJt0UnNWsFKWRMmUYseUi23fRwi6i9WniT-aEn0gpo_E9B8xfSDGfwEoXWGo |
| Cites_doi | 10.18280/mmep.111113 10.1109/TIM.2023.3267340 10.1016/j.rineng.2025.103972 10.1016/j.patcog.2024.110979 10.3390/electronics11081200 10.18100/ijamec.1253191 10.3390/met9020155 10.1016/j.measurement.2024.115189 10.1016/j.measurement.2024.115662 10.1016/j.commatsci.2023.112579 10.1016/j.aei.2024.102964 10.1007/978-981-97-6934-6_55 10.3390/machines10070523 10.1007/s11668-023-01817-2 10.1049/ipr2.12715 10.1007/s13369-024-09905-7 10.1016/j.patrec.2024.11.024 10.3109/10826089809115875 10.1109/CACRE62362.2024.10635031 10.1007/978-981-19-8851-6_41-1 10.1088/1361-6501/ac7034 10.3390/machines11070679 10.1016/j.compeleceng.2024.109916 10.1504/IJMMS.2022.127211 10.1080/10589759.2024.2406448 10.1007/s10845-023-02149-6 |
| ContentType | Journal Article |
| Copyright | Copyright © 2025 Fuji Technology Press Ltd. |
| Copyright_xml | – notice: Copyright © 2025 Fuji Technology Press Ltd. |
| CorporateAuthor | Editorial Office |
| CorporateAuthor_xml | – name: Editorial Office |
| DBID | AAYXX CITATION 7SC 7SP 8FD 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.20965/jaciii.2025.p1311 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Computer Science Database |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1883-8014 |
| EndPage | 1318 |
| ExternalDocumentID | 10_20965_jaciii_2025_p1311 |
| GroupedDBID | AAYXX AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS BENPR BGLVJ CCPQU CITATION GROUPED_DOAJ HCIFZ ISHAI JSI JSP K7- P2P PHGZM PHGZT PQGLB RJT RZJ TUS 7SC 7SP 8FD 8FE 8FG AZQEC DWQXO GNUQQ JQ2 L7M L~C L~D P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c2441-db94d8b847bfb278ba80330d5d2df5bbe4ba6801c68ff3f063fece4bf36eb7c13 |
| IEDL.DBID | K7- |
| ISSN | 1343-0130 |
| IngestDate | Tue Dec 02 10:00:55 EST 2025 Thu Nov 27 00:51:13 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2441-db94d8b847bfb278ba80330d5d2df5bbe4ba6801c68ff3f063fece4bf36eb7c13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-9070-0381 0009-0005-6986-4805 |
| OpenAccessLink | https://doi.org/10.20965/jaciii.2025.p1311 |
| PQID | 3272969086 |
| PQPubID | 4911628 |
| PageCount | 8 |
| ParticipantIDs | proquest_journals_3272969086 crossref_primary_10_20965_jaciii_2025_p1311 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-20 |
| PublicationDateYYYYMMDD | 2025-11-20 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-20 day: 20 |
| PublicationDecade | 2020 |
| PublicationPlace | Tokyo |
| PublicationPlace_xml | – name: Tokyo |
| PublicationTitle | Journal of advanced computational intelligence and intelligent informatics |
| PublicationYear | 2025 |
| Publisher | Fuji Technology Press Co. Ltd |
| Publisher_xml | – name: Fuji Technology Press Co. Ltd |
| References | key-10.20965/jaciii.2025.p1311-20 key-10.20965/jaciii.2025.p1311-24 key-10.20965/jaciii.2025.p1311-23 key-10.20965/jaciii.2025.p1311-22 key-10.20965/jaciii.2025.p1311-21 key-10.20965/jaciii.2025.p1311-28 key-10.20965/jaciii.2025.p1311-27 key-10.20965/jaciii.2025.p1311-26 key-10.20965/jaciii.2025.p1311-25 key-10.20965/jaciii.2025.p1311-8 key-10.20965/jaciii.2025.p1311-7 key-10.20965/jaciii.2025.p1311-6 key-10.20965/jaciii.2025.p1311-5 key-10.20965/jaciii.2025.p1311-9 key-10.20965/jaciii.2025.p1311-4 key-10.20965/jaciii.2025.p1311-13 key-10.20965/jaciii.2025.p1311-3 key-10.20965/jaciii.2025.p1311-12 key-10.20965/jaciii.2025.p1311-2 key-10.20965/jaciii.2025.p1311-11 key-10.20965/jaciii.2025.p1311-1 key-10.20965/jaciii.2025.p1311-10 key-10.20965/jaciii.2025.p1311-17 key-10.20965/jaciii.2025.p1311-16 key-10.20965/jaciii.2025.p1311-15 key-10.20965/jaciii.2025.p1311-14 key-10.20965/jaciii.2025.p1311-19 key-10.20965/jaciii.2025.p1311-18 |
| References_xml | – ident: key-10.20965/jaciii.2025.p1311-22 doi: 10.18280/mmep.111113 – ident: key-10.20965/jaciii.2025.p1311-12 doi: 10.1109/TIM.2023.3267340 – ident: key-10.20965/jaciii.2025.p1311-19 doi: 10.1016/j.rineng.2025.103972 – ident: key-10.20965/jaciii.2025.p1311-2 doi: 10.1016/j.patcog.2024.110979 – ident: key-10.20965/jaciii.2025.p1311-25 doi: 10.3390/electronics11081200 – ident: key-10.20965/jaciii.2025.p1311-6 doi: 10.18100/ijamec.1253191 – ident: key-10.20965/jaciii.2025.p1311-9 doi: 10.3390/met9020155 – ident: key-10.20965/jaciii.2025.p1311-11 doi: 10.1016/j.measurement.2024.115189 – ident: key-10.20965/jaciii.2025.p1311-13 doi: 10.1016/j.measurement.2024.115662 – ident: key-10.20965/jaciii.2025.p1311-28 doi: 10.1016/j.commatsci.2023.112579 – ident: key-10.20965/jaciii.2025.p1311-14 doi: 10.1016/j.aei.2024.102964 – ident: key-10.20965/jaciii.2025.p1311-4 doi: 10.1007/978-981-97-6934-6_55 – ident: key-10.20965/jaciii.2025.p1311-16 – ident: key-10.20965/jaciii.2025.p1311-18 doi: 10.3390/machines10070523 – ident: key-10.20965/jaciii.2025.p1311-10 doi: 10.1007/s11668-023-01817-2 – ident: key-10.20965/jaciii.2025.p1311-17 doi: 10.1049/ipr2.12715 – ident: key-10.20965/jaciii.2025.p1311-26 doi: 10.1007/s13369-024-09905-7 – ident: key-10.20965/jaciii.2025.p1311-24 – ident: key-10.20965/jaciii.2025.p1311-21 doi: 10.1016/j.patrec.2024.11.024 – ident: key-10.20965/jaciii.2025.p1311-27 doi: 10.3109/10826089809115875 – ident: key-10.20965/jaciii.2025.p1311-8 doi: 10.1109/CACRE62362.2024.10635031 – ident: key-10.20965/jaciii.2025.p1311-15 doi: 10.1007/978-981-19-8851-6_41-1 – ident: key-10.20965/jaciii.2025.p1311-23 doi: 10.1088/1361-6501/ac7034 – ident: key-10.20965/jaciii.2025.p1311-5 doi: 10.3390/machines11070679 – ident: key-10.20965/jaciii.2025.p1311-20 doi: 10.1016/j.compeleceng.2024.109916 – ident: key-10.20965/jaciii.2025.p1311-3 doi: 10.1504/IJMMS.2022.127211 – ident: key-10.20965/jaciii.2025.p1311-7 doi: 10.1080/10589759.2024.2406448 – ident: key-10.20965/jaciii.2025.p1311-1 doi: 10.1007/s10845-023-02149-6 |
| SSID | ssj0001326041 ssib051641541 |
| Score | 2.3410418 |
| Snippet | Steel plate fault detection plays a crucial role in industrial manufacturing. However, the inherent complexity of steel plate fault data and the redundancy of... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Index Database |
| StartPage | 1311 |
| SubjectTerms | Accuracy Algorithms Aluminum Artificial neural networks Datasets Fault detection Feature extraction Informatics Machine learning Manufacturing Neural networks Principal components analysis Product reliability Steel plates |
| Title | Dual-Branch Residual Network for Enhanced Steel Plate Fault Detection |
| URI | https://www.proquest.com/docview/3272969086 |
| Volume | 29 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib051641541 issn: 1343-0130 databaseCode: M~E dateStart: 19970101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: P5Z dateStart: 20200101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: K7- dateStart: 20200101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1883-8014 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001326041 issn: 1343-0130 databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609eDF-sRn2YM3WZvsbh49idoWQSilKhQvYZ9UKWm1qb_f2U1C6cWLhwSSwBJ2Zme-mZ2dD6HrOJZK8kgQmlBFuBYBEYq6YgcmAx1ZJoTyZBPJcJhOJt1RlXBbVmWVtU30hlrPlcuRdxgM1oVQLo3vFl_EsUa53dWKQmMbNUNKQ6fnzwmp9SmCUAAQQrjOuQBWCXgZg3FXRsSC8hwNdT1QOp9CuYYOFGDA7cK1odn0VZum2vufQeu_f76P9irkie9LVTlAWyY_RK2a1QFXi_wI9XsrMSMPjnBjisdm6U9r4WFZLo4B4-J-PvV1A_ilMGaGRzPAq3ggVrMC90zha7vyY_Q26L8-PpGKbIGAaHhItOxynUpwVtJKmqRSpAFjIC5NtY2kNFyKGNyZilNrmQVkY42Cl5bFRiYqZCeokc9zc4pwxHkiHIeH1QnXoUxTG7IELgpPjHXP0E09rdmi7KmRQSzihZCVQsicEDIvhDN0WU9rVq2vZbae0_O_P1-gXTeUOz1Ig0vUKL5X5grtqJ_iY_ndRs2H_nA0bvtIvO2VB-6j6P0XJ37JsQ |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2lAalcCFAQgUL3ACdkau-uvw4VakmiRC1RRItUcXH3UwFFTkgcEH-qv5HZta2qF2499OCDbWll--3OzFvPzAN4lyRSSR6LgKZUBVyLMBCKumQHJkMdWyaE8mIT6XSaXV7msw5ct7UwLq2ytYneUOulcnvkhwwHy5HKZcmn1a_AqUa5v6uthEY9LU7N3z9I2TZHkwHi-57S0fDi8zhoVAUCfAYeBVrmXGcSrbK0kqaZFFmIpF7HmmobS2m4FAnabZVk1jKLLtwahRctS4xMVcRw3B14wDmSJVw_s_h7O39jpB4YkUQ3ezwYG4W85nzcpS2xsK7boa7nyuFPoVwDCYphx8eVa3tz2zfedg3e34169-1LPYHHTWRNjuul8BQ6pnwGvVa1gjRGbA-Gg61YBCdOUGROvpqNr0Yj0zodnmAMT4bl3OdFkPPKmAWZLTAeJyOxXVRkYCqfu1Y-h2938jIvoFsuS_MSSMx5KpxGidUp15HMMhuxFA-KZ4zlffjQwlis6p4hBXItD3pRg1440AsPeh_2WxiLxn5sihsMX_3_9gHsji--nBVnk-npa3jkhnWVkjTch2613po38FD9rn5s1m_9VCVwddeI_wNVxyZQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dual-Branch+Residual+Network+for+Enhanced+Steel+Plate+Fault+Detection&rft.jtitle=Journal+of+advanced+computational+intelligence+and+intelligent+informatics&rft.au=Chen%2C+Hao&rft.au=Lu%2C+Jiaxin&rft.date=2025-11-20&rft.issn=1343-0130&rft.eissn=1883-8014&rft.volume=29&rft.issue=6&rft.spage=1311&rft.epage=1318&rft_id=info:doi/10.20965%2Fjaciii.2025.p1311&rft.externalDBID=n%2Fa&rft.externalDocID=10_20965_jaciii_2025_p1311 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1343-0130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1343-0130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1343-0130&client=summon |