An Adaptive Clustering Algorithm Based on Local-Density Peaks for Imbalanced Data Without Parameters
Imbalanced data clustering is a challenging problem in machine learning. The main difficulty is caused by the imbalance in both cluster size and data density distribution. To address this problem, we propose a novel clustering algorithm called LDPI based on local-density peaks in this study. First,...
Saved in:
| Published in: | IEEE transactions on knowledge and data engineering Vol. 35; no. 4; pp. 3419 - 3432 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
IEEE
01.04.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects: | |
| ISSN: | 1041-4347, 1558-2191 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Imbalanced data clustering is a challenging problem in machine learning. The main difficulty is caused by the imbalance in both cluster size and data density distribution. To address this problem, we propose a novel clustering algorithm called LDPI based on local-density peaks in this study. First, an initial sub-cluster construction scheme is designed based on a 3-dimensional (3-D) decision graph that can easily detect the initial sub-cluster centers and identify the noise points. Second, a sub-cluster updating strategy is designed, which can automatically identify the false sub-cluster centers and update the initial sub-clusters. Third, a sub-cluster merging scheme is designed, which merges the updated initial sub-clusters into final clusters. Consequently, the proposed algorithm has three advantages: 1) It does not require any input parameters; 2) It can automatically determine the cluster centers and number of clusters; 3) It is suitable for imbalanced datasets and datasets with arbitrary shapes and distributions. The effectiveness of LDPI is demonstrated experimentally and the superiority of LDPI is identified by comparison with 5 state-of-the-art algorithms. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1041-4347 1558-2191 |
| DOI: | 10.1109/TKDE.2021.3138962 |