Cognitive Computing-Based Mammographic Image Classification on an Internet of Medical

Recently, the Internet of Medical Things (IoMT) has become a research hotspot due to its various applicability in medical field. However, the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment, generating a m...

Full description

Saved in:
Bibliographic Details
Published in:Computers, materials & continua Vol. 72; no. 2; pp. 3945 - 3959
Main Authors: Mansour, Romany F, Althobaiti, Maha M
Format: Journal Article
Language:English
Published: Henderson Tech Science Press 2022
Subjects:
ISSN:1546-2226, 1546-2218, 1546-2226
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Recently, the Internet of Medical Things (IoMT) has become a research hotspot due to its various applicability in medical field. However, the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment, generating a massive quantity of healthcare data. In such cases, cognitive computing can be employed that uses many intelligent technologies–machine learning (ML), deep learning (DL), artificial intelligence (AI), natural language processing (NLP) and others–to comprehend data expansively. Furthermore, breast cancer (BC) has been found to be a major cause of mortality among ladies globally. Earlier detection and classification of BC using digital mammograms can decrease the mortality rate. This paper presents a novel deep learning-enabled multi-objective mayfly optimization algorithm (DL-MOMFO) for BC diagnosis and classification in the IoMT environment. The goal of this paper is to integrate deep learning (DL) and cognitive computing-based techniques for e-healthcare applications as a part of IoMT technology to detect and classify BC. The proposed DL-MOMFO algorithm involved Adaptive Weighted Mean Filter (AWMF)-based noise removal and contrast-limited adaptive histogram equalisation (CLAHE)-based contrast improvement techniques to improve the quality of the digital mammograms. In addition, a U-Net architecture-based segmentation method was utilised to detect diseased regions in the mammograms. Moreover, a SqueezeNet-based feature extraction and a fuzzy support vector machine (FSVM) classifier were used in the presented technique. To enhance the diagnostic performance of the presented method, the MOMFO algorithm was used to effectively tune the parameters of the SqueezeNet and FSVM techniques. The DL-MOMFO technique was tested on the MIAS database, and the experimental outcomes revealed that the DL-MOMFO technique outperformed existing techniques.
AbstractList Recently, the Internet of Medical Things (IoMT) has become a research hotspot due to its various applicability in medical field. However, the data analysis and management in IoMT remain challenging owing to the existence of a massive number of devices linked to the server environment, generating a massive quantity of healthcare data. In such cases, cognitive computing can be employed that uses many intelligent technologies–machine learning (ML), deep learning (DL), artificial intelligence (AI), natural language processing (NLP) and others–to comprehend data expansively. Furthermore, breast cancer (BC) has been found to be a major cause of mortality among ladies globally. Earlier detection and classification of BC using digital mammograms can decrease the mortality rate. This paper presents a novel deep learning-enabled multi-objective mayfly optimization algorithm (DL-MOMFO) for BC diagnosis and classification in the IoMT environment. The goal of this paper is to integrate deep learning (DL) and cognitive computing-based techniques for e-healthcare applications as a part of IoMT technology to detect and classify BC. The proposed DL-MOMFO algorithm involved Adaptive Weighted Mean Filter (AWMF)-based noise removal and contrast-limited adaptive histogram equalisation (CLAHE)-based contrast improvement techniques to improve the quality of the digital mammograms. In addition, a U-Net architecture-based segmentation method was utilised to detect diseased regions in the mammograms. Moreover, a SqueezeNet-based feature extraction and a fuzzy support vector machine (FSVM) classifier were used in the presented technique. To enhance the diagnostic performance of the presented method, the MOMFO algorithm was used to effectively tune the parameters of the SqueezeNet and FSVM techniques. The DL-MOMFO technique was tested on the MIAS database, and the experimental outcomes revealed that the DL-MOMFO technique outperformed existing techniques.
Author F. Mansour, Romany
M. Althobaiti, Maha
Author_xml – sequence: 1
  givenname: Romany
  surname: Mansour
  middlename: F
  fullname: Mansour, Romany F
– sequence: 2
  givenname: Maha
  surname: Althobaiti
  middlename: M
  fullname: Althobaiti, Maha M
BookMark eNp1kM1LAzEQxYNUsK3ePS543jpJdrO7Ry1-FFq82HNIs8maspusSSr43xtbDyIID2Zg3pthfjM0sc4qhK4xLChhUNzKQS4IELIAwkpcnqEpLguWE0LY5Fd_gWYh7AEoow1M0XbpOmui-VDZ0g3jIRrb5fciqDbbiGFwnRfjm5HZahBdsvQiBKONFNE4myUJm61sVN6qmDmdbVSbhv0lOteiD-rqp87R9vHhdfmcr1-eVsu7dS5JQWPeKllIoLQsad2oBlotaFuD1rgtdUULkA2tWVVV9U7SRjeU7ICVSVLsSMkwnaOb097Ru_eDCpHv3cHbdJITVjDAmECVXOzkkt6F4JXm0sTjB9EL03MM_IiQJ4T8GyE_IUxB-BMcvRmE__w_8gVl83UH
CitedBy_id crossref_primary_10_1177_03000605241237867
Cites_doi 10.1109/ACCESS.2021.3066365
10.1002/cam4.2548
10.1155/2019/5176705
10.1080/00207160.2020.1817411
10.1016/j.measurement.2021.109442
10.1016/j.procs.2020.03.334
10.3390/diagnostics11020241
10.1200/JCO.2017.35.15_suppl.6589
10.1109/ACCESS.2018.2791469
10.1109/JIOT.2019.2926321
10.1109/ACCESS.2020.3005228
10.1109/72.991432
10.1007/978-3-030-55833-8_11
10.1016/j.future.2019.01.033
10.1142/S1469026820500078
10.1016/j.bbe.2020.07.011
10.3390/jrfm9040013
10.1109/ACCESS.2020.2993536
10.1007/978-981-15-1465-4_21
10.1002/jemt.23773
10.1016/j.egyr.2021.02.042
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
8BQ
8FD
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
JG9
JQ2
L7M
L~C
L~D
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.32604/cmc.2022.026515
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
METADEX
Technology Research Database
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Materials Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
METADEX
Computer and Information Systems Abstracts Professional
ProQuest Central
Engineered Materials Abstracts
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
Advanced Technologies Database with Aerospace
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1546-2226
EndPage 3959
ExternalDocumentID 10_32604_cmc_2022_026515
GroupedDBID AAFWJ
AAYXX
ACIWK
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BENPR
CCPQU
CITATION
EBS
EJD
J9A
OK1
P2P
PHGZM
PHGZT
PIMPY
RTS
TUS
7SC
7SR
8BQ
8FD
ABUWG
AZQEC
DWQXO
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c243t-dec4c03355389e90dfa3d80ff1d5f7340c93867778bc39f932b065065cab25613
IEDL.DBID BENPR
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779567700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1546-2226
1546-2218
IngestDate Sun Sep 07 03:31:24 EDT 2025
Tue Nov 18 21:53:00 EST 2025
Sat Nov 29 03:13:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c243t-dec4c03355389e90dfa3d80ff1d5f7340c93867778bc39f932b065065cab25613
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2646011207?pq-origsite=%requestingapplication%
PQID 2646011207
PQPubID 2048737
PageCount 15
ParticipantIDs proquest_journals_2646011207
crossref_citationtrail_10_32604_cmc_2022_026515
crossref_primary_10_32604_cmc_2022_026515
PublicationCentury 2000
PublicationDate 2022-00-00
20220101
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace Henderson
PublicationPlace_xml – name: Henderson
PublicationTitle Computers, materials & continua
PublicationYear 2022
Publisher Tech Science Press
Publisher_xml – name: Tech Science Press
References Mansour (ref6) 2020; 19
Sadad (ref11) 2021; 84
Guo (ref23) 2021; 7
Chen (ref1) 2018; 6
Hambarde (ref18) 2020; 40
Zhang (ref16) 2020; 8
Turabieh (ref13) 2019; 6
Zheng (ref14) 2020; 8
Lahoura (ref24) 2021; 11
ref19
Mansour (ref20) 2021; 9
Kaushal (ref7) 2021; 98
Suwanvecho (ref2) 2017; 35
Memon (ref10) 2019; 2019
Wessels (ref8) 2020; 621
Gopal (ref15) 2021; 178
Lin (ref21) 2002; 13
Preissl (ref5) 2012
Esser (ref4) 2013
Shi (ref22) 2016; 9
McNamara (ref3) 2019; 8
Yugander (ref17) 2020; 167
Khan (ref9) 2019; 98
Mathapati (ref12) 2021; 311
References_xml – volume: 9
  start-page: 45137
  year: 2021
  ident: ref20
  article-title: Artificial intelligence and internet of things enabled disease diagnosis model for smart healthcare systems
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3066365
– start-page: 1
  year: 2012
  ident: ref5
  article-title: November. compass: A scalable simulator for an architecture for cognitive computing
– volume: 8
  start-page: 6578
  year: 2019
  ident: ref3
  article-title: Differential impact of cognitive computing augmented by real world evidence on novice and expert oncologists
  publication-title: Cancer Medicine
  doi: 10.1002/cam4.2548
– volume: 2019
  year: 2019
  ident: ref10
  article-title: Breast cancer detection in the IOT health environment using modified recursive feature selection
  publication-title: Wireless Communications and Mobile Computing
  doi: 10.1155/2019/5176705
– start-page: 1
  year: 2013
  ident: ref4
  article-title: August. cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores
– volume: 98
  start-page: 1293
  year: 2021
  ident: ref7
  article-title: Firefly optimization-based segmentation technique to analyse medical images of breast cancer
  publication-title: International Journal of Computer Mathematics
  doi: 10.1080/00207160.2020.1817411
– volume: 178
  start-page: 109442
  year: 2021
  ident: ref15
  article-title: Feature selection and classification in breast cancer prediction using IoT and machine learning
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109442
– volume: 167
  start-page: 677
  year: 2020
  ident: ref17
  article-title: MR image enhancement using adaptive weighted mean filtering and homomorphic filtering
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2020.03.334
– volume: 11
  start-page: 241
  year: 2021
  ident: ref24
  article-title: Cloud computing-based framework for breast cancer diagnosis using extreme learning machine
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11020241
– volume: 35
  start-page: 6589
  year: 2017
  ident: ref2
  article-title: Concordance assessment of a cognitive computing system in Thailand
  publication-title: Journal of Clinical Oncology
  doi: 10.1200/JCO.2017.35.15_suppl.6589
– volume: 6
  start-page: 19774
  year: 2018
  ident: ref1
  article-title: Cognitive computing: Architecture, technologies and intelligent applications
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2791469
– volume: 6
  start-page: 9316
  year: 2019
  ident: ref13
  article-title: Dynamic adaptive network-based fuzzy inference system (D-ANFIS) for the imputation of missing data for internet of medical things applications
  publication-title: IEEE Internet of Things Journal
  doi: 10.1109/JIOT.2019.2926321
– volume: 8
  start-page: 120208
  year: 2020
  ident: ref16
  article-title: Deep learning based analysis of breast cancer using advanced ensemble classifier and linear discriminant analysis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005228
– volume: 13
  start-page: 464
  year: 2002
  ident: ref21
  article-title: Fuzzy support vector machines
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/72.991432
– volume: 311
  start-page: 181
  year: 2021
  ident: ref12
  article-title: An intelligent internet of medical things with deep learning based automated breast cancer detection and classification model
  publication-title: Cognitive Internet of Medical Things for Smart Healthcare
  doi: 10.1007/978-3-030-55833-8_11
– volume: 98
  start-page: 286
  year: 2019
  ident: ref9
  article-title: An e-health care services framework for the detection and classification of breast cancer in breast cytology images as an IoMT application
  publication-title: Future Generation Computer Systems
  doi: 10.1016/j.future.2019.01.033
– ident: ref19
– volume: 19
  start-page: 2050007
  year: 2020
  ident: ref6
  article-title: A robust deep neural network based breast cancer detection and classification
  publication-title: International Journal of Computational Intelligence and Applications
  doi: 10.1142/S1469026820500078
– volume: 40
  start-page: 1421
  year: 2020
  ident: ref18
  article-title: Prostate lesion segmentation in MR images using radiomics based deeply supervised U-net
  publication-title: Biocybernetics and Biomedical Engineering
  doi: 10.1016/j.bbe.2020.07.011
– volume: 9
  start-page: 13
  year: 2016
  ident: ref22
  article-title: Credit scoring by fuzzy support vector machines with a novel membership function
  publication-title: Journal of Risk and Financial Management
  doi: 10.3390/jrfm9040013
– volume: 8
  start-page: 96946
  year: 2020
  ident: ref14
  article-title: Deep learning assisted efficient AdaBoost algorithm for breast cancer detection and early diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2993536
– volume: 621
  start-page: 201
  year: 2020
  ident: ref8
  article-title: Applying deep learning for the detection of abnormalities in mammograms
  publication-title: Information Science and Applications
  doi: 10.1007/978-981-15-1465-4_21
– volume: 84
  start-page: 2186
  year: 2021
  ident: ref11
  article-title: Internet of medical things embedding deep learning with data augmentation for mammogram density classification
  publication-title: Microscopy Research and Technique
  doi: 10.1002/jemt.23773
– volume: 7
  start-page: 1234
  year: 2021
  ident: ref23
  article-title: Using the modified mayfly algorithm for optimizing the component size and operation strategy of a high temperature PEMFC-powered CCHP
  publication-title: Energy Reports
  doi: 10.1016/j.egyr.2021.02.042
SSID ssj0036390
Score 2.2471466
Snippet Recently, the Internet of Medical Things (IoMT) has become a research hotspot due to its various applicability in medical field. However, the data analysis and...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 3945
SubjectTerms Adaptive algorithms
Algorithms
Artificial intelligence
Computation
Data analysis
Deep learning
Feature extraction
Health care
Histograms
Image classification
Image segmentation
Internet of medical things
Machine learning
Mammography
Medical research
Mortality
Multiple objective analysis
Natural language processing
Optimization
Support vector machines
Title Cognitive Computing-Based Mammographic Image Classification on an Internet of Medical
URI https://www.proquest.com/docview/2646011207
Volume 72
WOSCitedRecordID wos000779567700032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: BENPR
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1546-2226
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0036390
  issn: 1546-2226
  databaseCode: PIMPY
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4UPHgRPyOKpgcvHiqj7bbuZIRA5ABZjCR4Wrq2S0hkIEx_v2-3zo-LF5MlO3Rrlj7t-9XueRC6UaonUplSEigWEh6JgEilPeJpGhiVRUz6ldhEOJ2K-TyKXcFt645V1jaxNNR6pWyNvAuOG3KHHvXC-_UbsapRdnfVSWjsoqZlKoN53uwPp_FTbYsZ-N_yl0ifB4SCN6s2KiFk8XhXLS2FIaV3kIb4Vhb3p2P6bZdLZzNq_fczD9GBCzPxQzUvjtCOyY9Rq5ZwwG5Fn6DZoD4-hKtG8GSkD55N44mEzko-64XC4yXYHVwqaNqzRSWcGC6Z46qmaAq8yrDb9jlFs9HwefBInNICUZSzgmijuPIYxB4Qv5jI05lkWnhZ1tN-FjLuqYhZ4rtQpIpFgCBNbWgX-ApgtinIGWrkq9ycI0yj0AgWcC24paozMvVFyHzJTS8NZWraqFsPc6IcDblVw3hNIB0pgUkAmMQCk1TAtNHt1xvrioLjj2c7NSyJW4zb5BuTi7-bL9G-7auqsHRQo9i8myu0pz6KxXZz7eYW3OPxJH75BOus170
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB2VggQXdsSOD3DgYJraznZAiK2iglY9gASn4NiOVIku0ALip_hGxnHCcuHGASk3J5YdP82b8djzAHaVqkepTBkNFA-piKOASqU96mkWGJXFXPpObCJst6Pb27hTgffyLow9VlnaxNxQ64Gye-Q1JG6MHerMC4-Gj9SqRtnsaimh4WBxad5eMWQbHTbPcH33GGucX59e0EJVgCom-Jhqo4TyOPIscrWJPZ1JriMvy-raz0IuPBVzW-QtjFLFYxwtS60bE_gKp2Tdbex3AiaFBXsVJjvNVueutP0c-T6_gumLgDJkT5cYRRfJEzXVsyUTGTvAsMe3MrzfifAnD-Tk1pj7b79lHmYLN5ocO9wvQMX0F2GulKgghcVagpvT8ngUcY3I1PQEmVuTlsTB5_W6u4o0e2hXSa4Qas9O5XAl-Mg-cXumZkwGGSnSWstw8yeTW4Fqf9A3q0BYHJqIB0JHwpbiMzL1o5D7Uph6GsrUrEGtXNZEFWXWrdrHQ4LhVg6EBIGQWCAkDghrsP_5xdCVGPnl3c0SBklhbEbJFwbWf2_egemL69ZVctVsX27AjO3X7SZtQnX89Gy2YEq9jLujp-0C1wTu_xozHythMV0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cognitive+Computing-Based+Mammographic+Image+Classification+on+an+Internet+of+Medical&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=F.+Mansour%2C+Romany&rft.au=M.+Althobaiti%2C+Maha&rft.date=2022&rft.issn=1546-2226&rft.volume=72&rft.issue=2&rft.spage=3945&rft.epage=3959&rft_id=info:doi/10.32604%2Fcmc.2022.026515&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_026515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon