Automated Configuration of Evolutionary Algorithms via Deep Reinforcement Learning for Constrained Multiobjective Optimization
Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective optimization evolutionary algorithms (CMOEAs). Current learning-assisted CMOEAs are typically crafted by human experts using manually designed techniq...
Uložené v:
| Vydané v: | IEEE transactions on cybernetics Ročník 55; číslo 12; s. 1 - 14 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.12.2025
|
| Predmet: | |
| ISSN: | 2168-2267, 2168-2275 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective optimization evolutionary algorithms (CMOEAs). Current learning-assisted CMOEAs are typically crafted by human experts using manually designed techniques, which tend to be overly tuned, ad hoc, and lacking versatility. To alleviate these limitations, this work proposes transforming the online configuration of CMOEA into determinations of discrete and continuous parameters, which are then solved by deep reinforcement learning (DRL) techniques. Specifically, the Actor-Critic framework is adapted to determine a factor that defines the environmental selection pressure. The deep Q -learning technique is adopted to determine the operators for producing offspring. Owing to the property of DRL, the configured algorithm can accommodate historical experience, current evolutionary dynamics, and future improvements to achieve self-learning. A new CMOEA is proposed using the automatically configured EA. Experiments on four challenging benchmarks and 21 real-world problems verify that our method significantly outperforms 11 state-of-the-art methods. The versatility and superiority of the automatically configured environment and operators over handcrafted methods justify the effectiveness of the automated configuration method, demonstrating a promising direction in evolutionary multiobjective optimization. |
|---|---|
| AbstractList | Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective optimization evolutionary algorithms (CMOEAs). Current learning-assisted CMOEAs are typically crafted by human experts using manually designed techniques, which tend to be overly tuned, ad hoc, and lacking versatility. To alleviate these limitations, this work proposes transforming the online configuration of CMOEA into determinations of discrete and continuous parameters, which are then solved by deep reinforcement learning (DRL) techniques. Specifically, the Actor-Critic framework is adapted to determine a factor that defines the environmental selection pressure. The deep Q -learning technique is adopted to determine the operators for producing offspring. Owing to the property of DRL, the configured algorithm can accommodate historical experience, current evolutionary dynamics, and future improvements to achieve self-learning. A new CMOEA is proposed using the automatically configured EA. Experiments on four challenging benchmarks and 21 real-world problems verify that our method significantly outperforms 11 state-of-the-art methods. The versatility and superiority of the automatically configured environment and operators over handcrafted methods justify the effectiveness of the automated configuration method, demonstrating a promising direction in evolutionary multiobjective optimization. Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective optimization evolutionary algorithms (CMOEAs). Current learning-assisted CMOEAs are typically crafted by human experts using manually designed techniques, which tend to be overly tuned, ad hoc, and lacking versatility. To alleviate these limitations, this work proposes transforming the online configuration of CMOEA into determinations of discrete and continuous parameters, which are then solved by deep reinforcement learning (DRL) techniques. Specifically, the Actor-Critic framework is adapted to determine a factor that defines the environmental selection pressure. The deep Q-learning technique is adopted to determine the operators for producing offspring. Owing to the property of DRL, the configured algorithm can accommodate historical experience, current evolutionary dynamics, and future improvements to achieve self-learning. A new CMOEA is proposed using the automatically configured evolutionary algorithm. Experiments on four challenging benchmarks and 21 real-world problems verify that our method significantly outperforms 11 state-of-the-art methods. The versatility and superiority of the automatically configured environment and operators over handcrafted methods justify the effectiveness of the automated configuration method, demonstrating a promising direction in evolutionary multiobjective optimization. |
| Author | Xue, Bing Zhang, Mengjie Gong, Wenyin Jin, Yaochu Ming, Fei |
| Author_xml | – sequence: 1 givenname: Fei orcidid: 0000-0003-1042-8206 surname: Ming fullname: Ming, Fei email: feiming@cug.edu.cn organization: School of Engineering, Trustworthy and General Artificial Intelligence Laboratory, Westlake University, Hangzhou, China – sequence: 2 givenname: Wenyin orcidid: 0000-0003-1610-6865 surname: Gong fullname: Gong, Wenyin email: wygong@cug.edu.cn organization: School of Computer Science, China University of Geosciences, Wuhan, China – sequence: 3 givenname: Bing orcidid: 0000-0002-4865-8026 surname: Xue fullname: Xue, Bing email: bing.xue@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 4 givenname: Mengjie orcidid: 0000-0003-4463-9538 surname: Zhang fullname: Zhang, Mengjie email: mengjie.zhang@ecs.vuw.ac.nz organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand – sequence: 5 givenname: Yaochu orcidid: 0000-0003-1100-0631 surname: Jin fullname: Jin, Yaochu email: jinyaochu@westlake.edu.cn organization: School of Engineering, Trustworthy and General Artificial Intelligence Laboratory, Westlake University, Hangzhou, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40911451$$D View this record in MEDLINE/PubMed |
| BookMark | eNpFkNtKw0AQhhepWK19AEFkXyB1D8k2uay1HqBSkHrhVdhsJnVLshs2m4Je-Owmtta5mQP__MN8F2hgrAGEriiZUEqS2_X8_W7CCIsmXBDOInqCzhkVccDYNBocazEdonHTbEkXcTdK4jM0DElCaRjRc_Q9a72tpIccz60p9KZ10mtrsC3wYmfLtm-k-8SzcmOd9h9Vg3da4nuAGr-CNoV1CiowHi9BOqPNBnej3qzxTmrTGb-0ZeeSbUF5vQO8qr2u9NfvmUt0WsiygfEhj9Dbw2I9fwqWq8fn-WwZKBZyH8iYx0mYMKWKsMgjyCXhnBClRCaKaR6ROJJZnolQCimJkKGQSaioglxAlrGMj9DN3rduswrytHa66r5K_0B0AroXKGebxkFxlFCS9rzTnnfa804PvLud6_2OBoB_PaUR44zyHy3If3o |
| CODEN | ITCEB8 |
| Cites_doi | 10.1038/nature14236 10.1109/TEVC.2023.3292527 10.1016/j.ins.2017.10.037 10.1109/MCI.2023.3245719 10.1016/j.eswa.2021.115493 10.23919/cje.2022.00.100 10.1109/tevc.2024.3395699 10.1109/TCYB.2023.3341982 10.1007/978-3-030-12598-1_27 10.1109/TCYB.2022.3178132 10.1016/j.ins.2014.03.042 10.1109/TEVC.2021.3066301 10.1109/TEVC.2023.3260306 10.1109/TCYB.2022.3163759 10.1109/TETCI.2024.3393368 10.1109/tevc.2024.3525153 10.1109/tevc.2024.3416552 10.1016/j.swevo.2022.101178 10.1109/MCI.2017.2742868 10.1109/TEVC.2022.3194729 10.1109/TCYB.2020.3021138 10.1109/TEVC.2018.2855411 10.1145/3638529.3653994 10.1109/TEVC.2022.3175065 10.1109/TEVC.2020.3004012 10.1162/evco_a_00259 10.1109/TVT.2025.3553499 10.1016/j.neucom.2024.129296 10.1016/j.swevo.2018.08.017 10.1016/j.swevo.2021.100961 10.1109/TEVC.2019.2894743 10.1109/TEVC.2023.3345470 10.1109/TEVC.2018.2869001 10.1109/TEVC.2022.3224600 10.1109/TEVC.2022.3155533 10.1016/j.engappai.2024.108673 10.1109/TEVC.2023.3328886 10.1109/TSMC.2019.2943973 10.1109/TEVC.2022.3197298 10.1109/TCYB.2021.3089633 10.1109/tevc.2025.3558362 10.1109/4235.797969 10.1109/TKDE.2009.191 10.1109/TEVC.2013.2281534 10.1109/TCYB.2023.3329947 10.1145/3520304.3533640 10.1109/TEVC.2022.3199775 10.1007/s00500-019-03794-x 10.1145/1390156.1390294 10.1109/TEVC.2008.925798 10.1007/978-3-030-58112-1_48 10.1109/TEVC.2022.3186667 10.1109/TPAMI.2025.3554669 10.1109/TEVC.2021.3060811 10.1109/4235.996017 10.1613/jair.1.13676 10.1145/3321707.3321813 10.1109/TC.2022.3173151 10.1109/MCI.2023.3277768 10.1016/j.ejor.2021.05.042 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM |
| DOI | 10.1109/TCYB.2025.3603251 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed |
| DatabaseTitle | CrossRef PubMed |
| DatabaseTitleList | PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2168-2275 |
| EndPage | 14 |
| ExternalDocumentID | 40911451 10_1109_TCYB_2025_3603251 11152321 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62576325 funderid: 10.13039/501100001809 – fundername: International Collaboration Fund for Creative Research of National Science Foundation of China (NSFC ICFCRT) grantid: W2441019 |
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK AENEX AGQYO AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX AGSQL CITATION EJD NPM |
| ID | FETCH-LOGICAL-c243t-a8389492ccf4fd5eda03300cc6b6f7d5085abdb64a6aa06a46a94c1ced6ebb2b3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001566853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2168-2267 |
| IngestDate | Fri Nov 28 01:41:34 EST 2025 Thu Nov 27 00:55:19 EST 2025 Wed Sep 17 06:32:00 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c243t-a8389492ccf4fd5eda03300cc6b6f7d5085abdb64a6aa06a46a94c1ced6ebb2b3 |
| ORCID | 0000-0003-1042-8206 0000-0003-4463-9538 0000-0003-1610-6865 0000-0003-1100-0631 0000-0002-4865-8026 |
| PMID | 40911451 |
| PageCount | 14 |
| ParticipantIDs | crossref_primary_10_1109_TCYB_2025_3603251 pubmed_primary_40911451 ieee_primary_11152321 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-Dec |
| PublicationDateYYYYMMDD | 2025-12-01 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-Dec |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on cybernetics |
| PublicationTitleAbbrev | TCYB |
| PublicationTitleAlternate | IEEE Trans Cybern |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref12 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref17 ref16 ref19 ref18 Zhao (ref20) 2023 ref51 ref50 Zhang (ref60) 2008 ref45 ref48 Deb (ref58) 1995; 9 ref42 ref41 ref44 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 Adriaensen (ref47) ref38 Zitzler (ref56) ref24 ref68 ref23 ref67 ref26 ref25 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 Xue (ref43); 35 ref29 Biedenkapp (ref46) Silver (ref54) ref62 ref61 |
| References_xml | – ident: ref18 doi: 10.1038/nature14236 – ident: ref2 doi: 10.1109/TEVC.2023.3292527 – ident: ref26 doi: 10.1016/j.ins.2017.10.037 – ident: ref39 doi: 10.1109/MCI.2023.3245719 – ident: ref48 doi: 10.1016/j.eswa.2021.115493 – ident: ref42 doi: 10.23919/cje.2022.00.100 – ident: ref53 doi: 10.1109/tevc.2024.3395699 – ident: ref5 doi: 10.1109/TCYB.2023.3341982 – ident: ref65 doi: 10.1007/978-3-030-12598-1_27 – ident: ref38 doi: 10.1109/TCYB.2022.3178132 – ident: ref17 doi: 10.1016/j.ins.2014.03.042 – ident: ref24 doi: 10.1109/TEVC.2021.3066301 – start-page: 387 volume-title: Proc. 31st Int. Conf. Mach. Learn. ident: ref54 article-title: Deterministic policy gradient algorithms – ident: ref36 doi: 10.1109/TEVC.2023.3260306 – ident: ref11 doi: 10.1109/TCYB.2022.3163759 – ident: ref37 doi: 10.1109/TETCI.2024.3393368 – volume-title: Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition year: 2008 ident: ref60 – ident: ref27 doi: 10.1109/tevc.2024.3525153 – ident: ref35 doi: 10.1109/tevc.2024.3416552 – ident: ref28 doi: 10.1016/j.swevo.2022.101178 – ident: ref59 doi: 10.1109/MCI.2017.2742868 – ident: ref63 doi: 10.1109/TEVC.2022.3194729 – year: 2023 ident: ref20 article-title: Automated design of metaheuristic algorithms: A survey publication-title: arXiv:2303.06532 – ident: ref14 doi: 10.1109/TCYB.2020.3021138 – ident: ref15 doi: 10.1109/TEVC.2018.2855411 – ident: ref8 doi: 10.1145/3638529.3653994 – ident: ref10 doi: 10.1109/TEVC.2022.3175065 – ident: ref16 doi: 10.1109/TEVC.2020.3004012 – start-page: 742 volume-title: Proc. Evol. Methods Design Optim. Control Appl. Ind. Probl. ident: ref56 article-title: SPEA2+: Improving the strength pareto evolutionary algorithm – ident: ref61 doi: 10.1162/evco_a_00259 – ident: ref6 doi: 10.1109/TVT.2025.3553499 – start-page: 554 volume-title: Proc. 25th Int. Joint Conf. Artif. Intell. ident: ref47 article-title: Towards a white box approach to automated algorithm design – ident: ref68 doi: 10.1016/j.neucom.2024.129296 – ident: ref13 doi: 10.1016/j.swevo.2018.08.017 – ident: ref3 doi: 10.1016/j.swevo.2021.100961 – ident: ref30 doi: 10.1109/TEVC.2019.2894743 – ident: ref34 doi: 10.1109/TEVC.2023.3345470 – ident: ref21 doi: 10.1109/TEVC.2018.2869001 – ident: ref31 doi: 10.1109/TEVC.2022.3224600 – ident: ref7 doi: 10.1109/TEVC.2022.3155533 – ident: ref9 doi: 10.1016/j.engappai.2024.108673 – ident: ref4 doi: 10.1109/TEVC.2023.3328886 – ident: ref64 doi: 10.1109/TSMC.2019.2943973 – ident: ref52 doi: 10.1109/TEVC.2022.3197298 – ident: ref40 doi: 10.1109/TCYB.2021.3089633 – ident: ref33 doi: 10.1109/tevc.2025.3558362 – volume: 9 start-page: 115 issue: 2 year: 1995 ident: ref58 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst. – volume: 35 start-page: 20147 volume-title: Proc. Adv. Neural Inf. Process. Syst. ident: ref43 article-title: Multi-agent dynamic algorithm configuration – start-page: 427 volume-title: Proc. ECAI ident: ref46 article-title: Dynamic algorithm configuration: Foundation of a new meta-algorithmic framework – ident: ref66 doi: 10.1109/4235.797969 – ident: ref67 doi: 10.1109/TKDE.2009.191 – ident: ref62 doi: 10.1109/TEVC.2013.2281534 – ident: ref32 doi: 10.1109/TCYB.2023.3329947 – ident: ref23 doi: 10.1145/3520304.3533640 – ident: ref25 doi: 10.1109/TEVC.2022.3199775 – ident: ref29 doi: 10.1007/s00500-019-03794-x – ident: ref55 doi: 10.1145/1390156.1390294 – ident: ref57 doi: 10.1109/TEVC.2008.925798 – ident: ref50 doi: 10.1007/978-3-030-58112-1_48 – ident: ref41 doi: 10.1109/TEVC.2022.3186667 – ident: ref45 doi: 10.1109/TPAMI.2025.3554669 – ident: ref51 doi: 10.1109/TEVC.2021.3060811 – ident: ref22 doi: 10.1109/4235.996017 – ident: ref44 doi: 10.1613/jair.1.13676 – ident: ref49 doi: 10.1145/3321707.3321813 – ident: ref1 doi: 10.1109/TC.2022.3173151 – ident: ref12 doi: 10.1109/MCI.2023.3277768 – ident: ref19 doi: 10.1016/j.ejor.2021.05.042 |
| SSID | ssj0000816898 |
| Score | 2.4120598 |
| Snippet | Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective... |
| SourceID | pubmed crossref ieee |
| SourceType | Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Automated algorithm configuration constrained multiobjective optimization Convergence Cybernetics Deep reinforcement learning DRL evolutionary algorithms (EAs) Evolutionary computation Evolutionary dynamics Heuristic algorithms learning to optimize Linear programming Optimization Training Vectors |
| Title | Automated Configuration of Evolutionary Algorithms via Deep Reinforcement Learning for Constrained Multiobjective Optimization |
| URI | https://ieeexplore.ieee.org/document/11152321 https://www.ncbi.nlm.nih.gov/pubmed/40911451 |
| Volume | 55 |
| WOSCitedRecordID | wos001566853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2168-2275 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000816898 issn: 2168-2267 databaseCode: RIE dateStart: 20130101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAMbDwLFBe8sAASClO4tjJWEorBgQIFVSmyHYupYg2qE0rsfDbsR1TBBIDm5U4VuTPj-_O_u4QOg4gAd8XzOMyDzyqCbEX-xB5eU4Z4TwMlVWlPV7zm5u410vunFjdamEAwF4-g4Yp2rP8rFBT4yo71_NS201GNr7IOa_EWnOHis0gYXPfBrrgaVrB3SmmT5LzbuvpQluDQdQIGQmDyP-xD9nEKr-Ipd1gOmv__LV1tOqYJG5W0G-gBRhtog03Vyf4xAWUPt1CH81pWWhmChk2Ar9Bf1rBjosct2du7InxO26-9ovxoHweTvBsIPAlwBu-BxtbVVk3InbhWPtYPzKNTWyKCd2wFfIW8qVaP_GtXomGTuJZQw-ddrd15bm8C54KaFh6ItYshiaBUjnNswgyQcKQEKWYZDnPNKWLhMwko4IJQZigTCRU-QoyBlIGMtxGS6NiBLsIiyjWBp3QA0UTL6G4YGB0f5RKkRFQcR2dfaGQvlXhNVJrlpAkNZClBrLUQVZHNdPx3xVdn9fRTgXc_I02Wn2Tgnjvjy_20YppuLqWcoCWyvEUDtGympWDyfjIjqtP87rOLw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQIMGFfSmrDxwAKdRxHCc5lk0gSkGoIDhFtjMpRdCgNq3EhW_HdgwIJA7crCxO5OflzdhvBqEdCgn4vuBeJHPqMU2IvdiH0MtzxkkUBYGyqrS7ZtRqxff3ybUTq1stDADYw2dwYIp2Lz8r1NC4yup6XGq7ycjGJ0LGqF_Jtb5cKjaHhM1-S3XB08QicvuYPknq7aOHQ20P0vAg4CSgof9jJbKpVX5RS7vEnM7-8-fm0IzjkrhRgT-PxqC3gObdaB3gXRdSem8RvTeGZaG5KWTYSPy6nWEFPC5yfDJyvU_033DjuVP0u-XjywCPugIfA7ziG7DRVZV1JGIXkLWD9SVT2cAmmdAVWylvIZ-qGRRf6bnoxYk8l9Dt6Un76MxzmRc8RVlQeiLWPIYlVKmc5VkImSBBQIhSXPI8yjSpC4XMJGeCC0G4YFwkTPkKMg5SUhkso_Fe0YNVhEUYa5NO6K6iqZdQkeBglH-MSZERUHEN7X-ikL5WATZSa5iQJDWQpQay1EFWQ0um4b8fdG1eQysVcF93tNnqmyTEa3-8sY2mztqXzbR53rpYR9PmI9UhlQ00XvaHsIkm1ajsDvpbto99ANIN0XY |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Configuration+of+Evolutionary+Algorithms+via+Deep+Reinforcement+Learning+for+Constrained+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Ming%2C+Fei&rft.au=Gong%2C+Wenyin&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2025-12-01&rft.eissn=2168-2275&rft.volume=55&rft.issue=12&rft.spage=5877&rft_id=info:doi/10.1109%2FTCYB.2025.3603251&rft_id=info%3Apmid%2F40911451&rft.externalDocID=40911451 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon |