Automated Configuration of Evolutionary Algorithms via Deep Reinforcement Learning for Constrained Multiobjective Optimization

Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective optimization evolutionary algorithms (CMOEAs). Current learning-assisted CMOEAs are typically crafted by human experts using manually designed techniq...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics Vol. 55; no. 12; pp. 1 - 14
Main Authors: Ming, Fei, Gong, Wenyin, Xue, Bing, Zhang, Mengjie, Jin, Yaochu
Format: Journal Article
Language:English
Published: United States IEEE 01.12.2025
Subjects:
ISSN:2168-2267, 2168-2275
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective optimization evolutionary algorithms (CMOEAs). Current learning-assisted CMOEAs are typically crafted by human experts using manually designed techniques, which tend to be overly tuned, ad hoc, and lacking versatility. To alleviate these limitations, this work proposes transforming the online configuration of CMOEA into determinations of discrete and continuous parameters, which are then solved by deep reinforcement learning (DRL) techniques. Specifically, the Actor-Critic framework is adapted to determine a factor that defines the environmental selection pressure. The deep Q -learning technique is adopted to determine the operators for producing offspring. Owing to the property of DRL, the configured algorithm can accommodate historical experience, current evolutionary dynamics, and future improvements to achieve self-learning. A new CMOEA is proposed using the automatically configured EA. Experiments on four challenging benchmarks and 21 real-world problems verify that our method significantly outperforms 11 state-of-the-art methods. The versatility and superiority of the automatically configured environment and operators over handcrafted methods justify the effectiveness of the automated configuration method, demonstrating a promising direction in evolutionary multiobjective optimization.
AbstractList Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective optimization evolutionary algorithms (CMOEAs). Current learning-assisted CMOEAs are typically crafted by human experts using manually designed techniques, which tend to be overly tuned, ad hoc, and lacking versatility. To alleviate these limitations, this work proposes transforming the online configuration of CMOEA into determinations of discrete and continuous parameters, which are then solved by deep reinforcement learning (DRL) techniques. Specifically, the Actor-Critic framework is adapted to determine a factor that defines the environmental selection pressure. The deep Q -learning technique is adopted to determine the operators for producing offspring. Owing to the property of DRL, the configured algorithm can accommodate historical experience, current evolutionary dynamics, and future improvements to achieve self-learning. A new CMOEA is proposed using the automatically configured EA. Experiments on four challenging benchmarks and 21 real-world problems verify that our method significantly outperforms 11 state-of-the-art methods. The versatility and superiority of the automatically configured environment and operators over handcrafted methods justify the effectiveness of the automated configuration method, demonstrating a promising direction in evolutionary multiobjective optimization.
Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective optimization evolutionary algorithms (CMOEAs). Current learning-assisted CMOEAs are typically crafted by human experts using manually designed techniques, which tend to be overly tuned, ad hoc, and lacking versatility. To alleviate these limitations, this work proposes transforming the online configuration of CMOEA into determinations of discrete and continuous parameters, which are then solved by deep reinforcement learning (DRL) techniques. Specifically, the Actor-Critic framework is adapted to determine a factor that defines the environmental selection pressure. The deep Q-learning technique is adopted to determine the operators for producing offspring. Owing to the property of DRL, the configured algorithm can accommodate historical experience, current evolutionary dynamics, and future improvements to achieve self-learning. A new CMOEA is proposed using the automatically configured evolutionary algorithm. Experiments on four challenging benchmarks and 21 real-world problems verify that our method significantly outperforms 11 state-of-the-art methods. The versatility and superiority of the automatically configured environment and operators over handcrafted methods justify the effectiveness of the automated configuration method, demonstrating a promising direction in evolutionary multiobjective optimization.
Author Xue, Bing
Zhang, Mengjie
Gong, Wenyin
Jin, Yaochu
Ming, Fei
Author_xml – sequence: 1
  givenname: Fei
  orcidid: 0000-0003-1042-8206
  surname: Ming
  fullname: Ming, Fei
  email: feiming@cug.edu.cn
  organization: School of Engineering, Trustworthy and General Artificial Intelligence Laboratory, Westlake University, Hangzhou, China
– sequence: 2
  givenname: Wenyin
  orcidid: 0000-0003-1610-6865
  surname: Gong
  fullname: Gong, Wenyin
  email: wygong@cug.edu.cn
  organization: School of Computer Science, China University of Geosciences, Wuhan, China
– sequence: 3
  givenname: Bing
  orcidid: 0000-0002-4865-8026
  surname: Xue
  fullname: Xue, Bing
  email: bing.xue@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 4
  givenname: Mengjie
  orcidid: 0000-0003-4463-9538
  surname: Zhang
  fullname: Zhang, Mengjie
  email: mengjie.zhang@ecs.vuw.ac.nz
  organization: School of Engineering and Computer Science, Victoria University of Wellington, Wellington, New Zealand
– sequence: 5
  givenname: Yaochu
  orcidid: 0000-0003-1100-0631
  surname: Jin
  fullname: Jin, Yaochu
  email: jinyaochu@westlake.edu.cn
  organization: School of Engineering, Trustworthy and General Artificial Intelligence Laboratory, Westlake University, Hangzhou, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40911451$$D View this record in MEDLINE/PubMed
BookMark eNpFkNtKw0AQhhepWK19AEFkXyB1D8k2uay1HqBSkHrhVdhsJnVLshs2m4Je-Owmtta5mQP__MN8F2hgrAGEriiZUEqS2_X8_W7CCIsmXBDOInqCzhkVccDYNBocazEdonHTbEkXcTdK4jM0DElCaRjRc_Q9a72tpIccz60p9KZ10mtrsC3wYmfLtm-k-8SzcmOd9h9Vg3da4nuAGr-CNoV1CiowHi9BOqPNBnej3qzxTmrTGb-0ZeeSbUF5vQO8qr2u9NfvmUt0WsiygfEhj9Dbw2I9fwqWq8fn-WwZKBZyH8iYx0mYMKWKsMgjyCXhnBClRCaKaR6ROJJZnolQCimJkKGQSaioglxAlrGMj9DN3rduswrytHa66r5K_0B0AroXKGebxkFxlFCS9rzTnnfa804PvLud6_2OBoB_PaUR44zyHy3If3o
CODEN ITCEB8
Cites_doi 10.1038/nature14236
10.1109/TEVC.2023.3292527
10.1016/j.ins.2017.10.037
10.1109/MCI.2023.3245719
10.1016/j.eswa.2021.115493
10.23919/cje.2022.00.100
10.1109/tevc.2024.3395699
10.1109/TCYB.2023.3341982
10.1007/978-3-030-12598-1_27
10.1109/TCYB.2022.3178132
10.1016/j.ins.2014.03.042
10.1109/TEVC.2021.3066301
10.1109/TEVC.2023.3260306
10.1109/TCYB.2022.3163759
10.1109/TETCI.2024.3393368
10.1109/tevc.2024.3525153
10.1109/tevc.2024.3416552
10.1016/j.swevo.2022.101178
10.1109/MCI.2017.2742868
10.1109/TEVC.2022.3194729
10.1109/TCYB.2020.3021138
10.1109/TEVC.2018.2855411
10.1145/3638529.3653994
10.1109/TEVC.2022.3175065
10.1109/TEVC.2020.3004012
10.1162/evco_a_00259
10.1109/TVT.2025.3553499
10.1016/j.neucom.2024.129296
10.1016/j.swevo.2018.08.017
10.1016/j.swevo.2021.100961
10.1109/TEVC.2019.2894743
10.1109/TEVC.2023.3345470
10.1109/TEVC.2018.2869001
10.1109/TEVC.2022.3224600
10.1109/TEVC.2022.3155533
10.1016/j.engappai.2024.108673
10.1109/TEVC.2023.3328886
10.1109/TSMC.2019.2943973
10.1109/TEVC.2022.3197298
10.1109/TCYB.2021.3089633
10.1109/tevc.2025.3558362
10.1109/4235.797969
10.1109/TKDE.2009.191
10.1109/TEVC.2013.2281534
10.1109/TCYB.2023.3329947
10.1145/3520304.3533640
10.1109/TEVC.2022.3199775
10.1007/s00500-019-03794-x
10.1145/1390156.1390294
10.1109/TEVC.2008.925798
10.1007/978-3-030-58112-1_48
10.1109/TEVC.2022.3186667
10.1109/TPAMI.2025.3554669
10.1109/TEVC.2021.3060811
10.1109/4235.996017
10.1613/jair.1.13676
10.1145/3321707.3321813
10.1109/TC.2022.3173151
10.1109/MCI.2023.3277768
10.1016/j.ejor.2021.05.042
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
DOI 10.1109/TCYB.2025.3603251
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
DatabaseTitle CrossRef
PubMed
DatabaseTitleList
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2168-2275
EndPage 14
ExternalDocumentID 40911451
10_1109_TCYB_2025_3603251
11152321
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62576325
  funderid: 10.13039/501100001809
– fundername: International Collaboration Fund for Creative Research of National Science Foundation of China (NSFC ICFCRT)
  grantid: W2441019
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
AGSQL
CITATION
EJD
NPM
ID FETCH-LOGICAL-c243t-a8389492ccf4fd5eda03300cc6b6f7d5085abdb64a6aa06a46a94c1ced6ebb2b3
IEDL.DBID RIE
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001566853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2168-2267
IngestDate Fri Nov 28 01:41:34 EST 2025
Thu Nov 27 00:55:19 EST 2025
Wed Sep 17 06:32:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c243t-a8389492ccf4fd5eda03300cc6b6f7d5085abdb64a6aa06a46a94c1ced6ebb2b3
ORCID 0000-0003-1042-8206
0000-0003-4463-9538
0000-0003-1610-6865
0000-0003-1100-0631
0000-0002-4865-8026
PMID 40911451
PageCount 14
ParticipantIDs crossref_primary_10_1109_TCYB_2025_3603251
pubmed_primary_40911451
ieee_primary_11152321
PublicationCentury 2000
PublicationDate 2025-Dec
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-Dec
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on cybernetics
PublicationTitleAbbrev TCYB
PublicationTitleAlternate IEEE Trans Cybern
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref12
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref17
ref16
ref19
ref18
Zhao (ref20) 2023
ref51
ref50
Zhang (ref60) 2008
ref45
ref48
Deb (ref58) 1995; 9
ref42
ref41
ref44
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
Adriaensen (ref47)
ref38
Zitzler (ref56)
ref24
ref68
ref23
ref67
ref26
ref25
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
Xue (ref43); 35
ref29
Biedenkapp (ref46)
Silver (ref54)
ref62
ref61
References_xml – ident: ref18
  doi: 10.1038/nature14236
– ident: ref2
  doi: 10.1109/TEVC.2023.3292527
– ident: ref26
  doi: 10.1016/j.ins.2017.10.037
– ident: ref39
  doi: 10.1109/MCI.2023.3245719
– ident: ref48
  doi: 10.1016/j.eswa.2021.115493
– ident: ref42
  doi: 10.23919/cje.2022.00.100
– ident: ref53
  doi: 10.1109/tevc.2024.3395699
– ident: ref5
  doi: 10.1109/TCYB.2023.3341982
– ident: ref65
  doi: 10.1007/978-3-030-12598-1_27
– ident: ref38
  doi: 10.1109/TCYB.2022.3178132
– ident: ref17
  doi: 10.1016/j.ins.2014.03.042
– ident: ref24
  doi: 10.1109/TEVC.2021.3066301
– start-page: 387
  volume-title: Proc. 31st Int. Conf. Mach. Learn.
  ident: ref54
  article-title: Deterministic policy gradient algorithms
– ident: ref36
  doi: 10.1109/TEVC.2023.3260306
– ident: ref11
  doi: 10.1109/TCYB.2022.3163759
– ident: ref37
  doi: 10.1109/TETCI.2024.3393368
– volume-title: Multiobjective Optimization Test Instances for the CEC 2009 Special Session and Competition
  year: 2008
  ident: ref60
– ident: ref27
  doi: 10.1109/tevc.2024.3525153
– ident: ref35
  doi: 10.1109/tevc.2024.3416552
– ident: ref28
  doi: 10.1016/j.swevo.2022.101178
– ident: ref59
  doi: 10.1109/MCI.2017.2742868
– ident: ref63
  doi: 10.1109/TEVC.2022.3194729
– year: 2023
  ident: ref20
  article-title: Automated design of metaheuristic algorithms: A survey
  publication-title: arXiv:2303.06532
– ident: ref14
  doi: 10.1109/TCYB.2020.3021138
– ident: ref15
  doi: 10.1109/TEVC.2018.2855411
– ident: ref8
  doi: 10.1145/3638529.3653994
– ident: ref10
  doi: 10.1109/TEVC.2022.3175065
– ident: ref16
  doi: 10.1109/TEVC.2020.3004012
– start-page: 742
  volume-title: Proc. Evol. Methods Design Optim. Control Appl. Ind. Probl.
  ident: ref56
  article-title: SPEA2+: Improving the strength pareto evolutionary algorithm
– ident: ref61
  doi: 10.1162/evco_a_00259
– ident: ref6
  doi: 10.1109/TVT.2025.3553499
– start-page: 554
  volume-title: Proc. 25th Int. Joint Conf. Artif. Intell.
  ident: ref47
  article-title: Towards a white box approach to automated algorithm design
– ident: ref68
  doi: 10.1016/j.neucom.2024.129296
– ident: ref13
  doi: 10.1016/j.swevo.2018.08.017
– ident: ref3
  doi: 10.1016/j.swevo.2021.100961
– ident: ref30
  doi: 10.1109/TEVC.2019.2894743
– ident: ref34
  doi: 10.1109/TEVC.2023.3345470
– ident: ref21
  doi: 10.1109/TEVC.2018.2869001
– ident: ref31
  doi: 10.1109/TEVC.2022.3224600
– ident: ref7
  doi: 10.1109/TEVC.2022.3155533
– ident: ref9
  doi: 10.1016/j.engappai.2024.108673
– ident: ref4
  doi: 10.1109/TEVC.2023.3328886
– ident: ref64
  doi: 10.1109/TSMC.2019.2943973
– ident: ref52
  doi: 10.1109/TEVC.2022.3197298
– ident: ref40
  doi: 10.1109/TCYB.2021.3089633
– ident: ref33
  doi: 10.1109/tevc.2025.3558362
– volume: 9
  start-page: 115
  issue: 2
  year: 1995
  ident: ref58
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst.
– volume: 35
  start-page: 20147
  volume-title: Proc. Adv. Neural Inf. Process. Syst.
  ident: ref43
  article-title: Multi-agent dynamic algorithm configuration
– start-page: 427
  volume-title: Proc. ECAI
  ident: ref46
  article-title: Dynamic algorithm configuration: Foundation of a new meta-algorithmic framework
– ident: ref66
  doi: 10.1109/4235.797969
– ident: ref67
  doi: 10.1109/TKDE.2009.191
– ident: ref62
  doi: 10.1109/TEVC.2013.2281534
– ident: ref32
  doi: 10.1109/TCYB.2023.3329947
– ident: ref23
  doi: 10.1145/3520304.3533640
– ident: ref25
  doi: 10.1109/TEVC.2022.3199775
– ident: ref29
  doi: 10.1007/s00500-019-03794-x
– ident: ref55
  doi: 10.1145/1390156.1390294
– ident: ref57
  doi: 10.1109/TEVC.2008.925798
– ident: ref50
  doi: 10.1007/978-3-030-58112-1_48
– ident: ref41
  doi: 10.1109/TEVC.2022.3186667
– ident: ref45
  doi: 10.1109/TPAMI.2025.3554669
– ident: ref51
  doi: 10.1109/TEVC.2021.3060811
– ident: ref22
  doi: 10.1109/4235.996017
– ident: ref44
  doi: 10.1613/jair.1.13676
– ident: ref49
  doi: 10.1145/3321707.3321813
– ident: ref1
  doi: 10.1109/TC.2022.3173151
– ident: ref12
  doi: 10.1109/MCI.2023.3277768
– ident: ref19
  doi: 10.1016/j.ejor.2021.05.042
SSID ssj0000816898
Score 2.4120598
Snippet Learning to optimize and automated algorithm design are attracting increasing attention, but it is still in its infancy in constrained multiobjective...
SourceID pubmed
crossref
ieee
SourceType Index Database
Publisher
StartPage 1
SubjectTerms Automated algorithm configuration
constrained multiobjective optimization
Convergence
Cybernetics
Deep reinforcement learning
DRL
evolutionary algorithms (EAs)
Evolutionary computation
Evolutionary dynamics
Heuristic algorithms
learning to optimize
Linear programming
Optimization
Training
Vectors
Title Automated Configuration of Evolutionary Algorithms via Deep Reinforcement Learning for Constrained Multiobjective Optimization
URI https://ieeexplore.ieee.org/document/11152321
https://www.ncbi.nlm.nih.gov/pubmed/40911451
Volume 55
WOSCitedRecordID wos001566853600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2168-2275
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000816898
  issn: 2168-2267
  databaseCode: RIE
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV05T8MwGLWgYmABCgXKJQ8MgBRwYsdJxnKJARWEQCpT5ONLKYIGtWklFn47tmOKQGJgi3JYkZ-P99l-30Nov1Cplvb0jMoYCVhCZSDMvBfYHSWSyowWwrmWXCfdbtrrZbderO60MADgDp_Bsb10e_m6VBO7VHZi-qWJm6xsfD5JklqsNVtQcQ4Szvs2MheBoRWJ38UMSXZyf_Z4aqLBKD6mnNAoDn_MQ85Y5RexdBPM5fI_f20FLXkmiTs19E00B8NV1PR9dYwPfELpwzX00ZlUpWGmoLEV-A36kxp2XBb4Yurbnhi9485LvxwNqqfXMZ4OBD4HeMN34HKrKreMiH061j42t2xhY2cxYQp2Qt5SPtfjJ74xI9Grl3i20MPlxf3ZVeB9FwIVMVoFIjUshmWRUgUrdAxaEEoJUYpLXiTaULpYSC05E1wIwgXjImMqVKA5SBlJuo4aw3IImwgrzoFmJJbaEC_DrtICBMhCS2DAQ5BtdPSFQv5Wp9fIXVhCstxCllvIcg9ZG7VsxX-_6Ou8jTZq4GZPTNAaWgvirT--2EaLtuD6WMoOalSjCeyiBTWtBuPRnmtXn3UVzjw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELUQIMGFfSmrDxwAKeDEjpscyyYQpSBUJDhFXialCBrUppW48O3YjgGBxIGblcWJ_Ly8GfvNILSTq0RLe3pGpYwErE5lIMy6F9gdJZLIlObCZS1p1lut5P4-vfFidaeFAQB3-AwObNHt5etCDa2r7NCMS2M3Wdn4RMxYFFZyrS-Xissh4bLfRqYQGGJR9_uYIUkP28cPR8YejOIDygmN4vDHSuRSq_yilm6JOZv958_NoRnPJXGjAn8ejUFvAc370TrAuz6k9N4iem8My8JwU9DYSvy6nWEFPC5yfDryvU_033DjuVP0u-XjywCPugKfALziW3DRVZVzJGIfkLWDzSVb2cAlmTAVOylvIZ-qGRRfm7noxYs8l9Dd2Wn7-DzwmRcCFTFaBiIxPIalkVI5y3UMWhBKCVGKS57XtSF1sZBacia4EIQLxkXKVKhAc5AyknQZjfeKHqwirDgHmpJYakO9DL9KchAgcy2BAQ9B1tD-JwrZaxVgI3OGCUkzC1lmIcs8ZDW0ZBv--0Hf5jW0UgH3dceYraFNQrz2xxvbaOq8fdXMmhety3U0bT9SHVLZQONlfwibaFKNyu6gv-X62AdUftGD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Configuration+of+Evolutionary+Algorithms+via+Deep+Reinforcement+Learning+for+Constrained+Multiobjective+Optimization&rft.jtitle=IEEE+transactions+on+cybernetics&rft.au=Ming%2C+Fei&rft.au=Gong%2C+Wenyin&rft.au=Xue%2C+Bing&rft.au=Zhang%2C+Mengjie&rft.date=2025-12-01&rft.eissn=2168-2275&rft.volume=55&rft.issue=12&rft.spage=5877&rft_id=info:doi/10.1109%2FTCYB.2025.3603251&rft_id=info%3Apmid%2F40911451&rft.externalDocID=40911451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2267&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2267&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2267&client=summon