Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System
Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any tim...
Uloženo v:
| Vydáno v: | Computers, materials & continua Ročník 72; číslo 2; s. 2713 - 2727 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Henderson
Tech Science Press
2022
|
| Témata: | |
| ISSN: | 1546-2226, 1546-2218, 1546-2226 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any time. In this view, this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection (IAOA-DLFD) model to identify the fall/non-fall events. The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality. Besides, the IAOA with Capsule Network based feature extractor is derived to produce an optimal set of feature vectors. In addition, the IAOA uses to significantly boost the overall FD performance by optimal choice of CapsNet hyperparameters. Lastly, radial basis function (RBF) network is applied for determining the proper class labels of the test images. To showcase the enhanced performance of the IAOA-DLFD technique, a wide range of experiments are executed and the outcomes stated the enhanced detection outcome of the IAOA-DLFD approach over the recent methods with the accuracy of 0.997. |
|---|---|
| AbstractList | Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events and save human lives. Generally, elderly people suffer from several diseases, and fall action is a common situation which can occur at any time. In this view, this paper presents an Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection (IAOA-DLFD) model to identify the fall/non-fall events. The proposed IAOA-DLFD technique comprises different levels of pre-processing to improve the input image quality. Besides, the IAOA with Capsule Network based feature extractor is derived to produce an optimal set of feature vectors. In addition, the IAOA uses to significantly boost the overall FD performance by optimal choice of CapsNet hyperparameters. Lastly, radial basis function (RBF) network is applied for determining the proper class labels of the test images. To showcase the enhanced performance of the IAOA-DLFD technique, a wide range of experiments are executed and the outcomes stated the enhanced detection outcome of the IAOA-DLFD approach over the recent methods with the accuracy of 0.997. |
| Author | Mustafa Hilal, Anwer Saleh Alluhaidan, Ala Ahmed Hamza, Manar N. Al-Wesabi, Fahd Motwakel, Abdelwahed Alajmi, Masoud |
| Author_xml | – sequence: 1 givenname: Ala surname: Saleh Alluhaidan fullname: Saleh Alluhaidan, Ala – sequence: 2 givenname: Masoud surname: Alajmi fullname: Alajmi, Masoud – sequence: 3 givenname: Fahd surname: N. Al-Wesabi fullname: N. Al-Wesabi, Fahd – sequence: 4 givenname: Anwer surname: Mustafa Hilal fullname: Mustafa Hilal, Anwer – sequence: 5 givenname: Manar surname: Ahmed Hamza fullname: Ahmed Hamza, Manar – sequence: 6 givenname: Abdelwahed surname: Motwakel fullname: Motwakel, Abdelwahed |
| BookMark | eNp1kMFOAjEQQBuDiYDePW7iGWy7pbt7JAhKQsJBPZqm285CyXZ3bYsEv94KHoyJl5lJZt5M5g1Qr2kbQOiW4HFKOWb3yqoxxZSOMZ3EfIH6ZML4iFLKe7_qKzTwfodxytMC99Hb0nau_QCdTJ3aGgsafLLugrHmUwbTNsm03rTOhK1NDjEmDwBdsgLpGtNskrnt2gO4iC9kXcdmAHWino8-gL1Gl5WsPdz85CF6XcxfZk-j1fpxOZuuRoqyNIx4rnERg1Y5yzQrC6VzVakirQgUsZNByTRXUmfAaJZXsiSAaZmqotKcZiwdorvz3vjL-x58ELt275p4UlDOOCaEEhqn8HlKudZ7B5XonLHSHQXB4iRRRIniW6I4S4wI_4MoE05egpOm_h_8Ahboec8 |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2024_114186 crossref_primary_10_32604_cmc_2023_039084 |
| Cites_doi | 10.1109/ACCESS.2021.3094243 10.3390/e23030328 10.1016/j.eswa.2020.114226 10.1016/j.ins.2020.05.070 10.1109/JSEN.2020.2967100 10.5373/JARDCS/V12SP7/20202102 10.3390/s18103363 10.1007/s11042-020-10304-x 10.3390/electronics9111831 10.1007/s10489-020-01893-z 10.3390/jsan10030039 10.30534/ijeter/2020/28832020 10.1109/ACCESS.2021.3114871 10.3390/s18093153 10.1109/ACCESS.2021.3061626 |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 8BQ 8FD ABUWG AFKRA AZQEC BENPR CCPQU DWQXO JG9 JQ2 L7M L~C L~D PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS |
| DOI | 10.32604/cmc.2022.025202 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts METADEX Technology Research Database ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China METADEX Computer and Information Systems Abstracts Professional ProQuest Central Engineered Materials Abstracts ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic Advanced Technologies Database with Aerospace ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1546-2226 |
| EndPage | 2727 |
| ExternalDocumentID | 10_32604_cmc_2022_025202 |
| GroupedDBID | AAFWJ AAYXX ACIWK ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS BENPR CCPQU CITATION EBS EJD J9A OK1 P2P PHGZM PHGZT PIMPY RTS TUS 7SC 7SR 8BQ 8FD ABUWG AZQEC DWQXO JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c243t-68d0968ddc847d4b9cd8cfc93f1e90967eb4d6cad7e4278fab1e02b3c9fd62743 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000779564300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1546-2226 1546-2218 |
| IngestDate | Mon Jun 30 04:32:48 EDT 2025 Tue Nov 18 21:49:04 EST 2025 Sat Nov 29 03:13:22 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c243t-68d0968ddc847d4b9cd8cfc93f1e90967eb4d6cad7e4278fab1e02b3c9fd62743 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2646011212?pq-origsite=%requestingapplication% |
| PQID | 2646011212 |
| PQPubID | 2048737 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2646011212 crossref_primary_10_32604_cmc_2022_025202 crossref_citationtrail_10_32604_cmc_2022_025202 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 20220101 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | Henderson |
| PublicationPlace_xml | – name: Henderson |
| PublicationTitle | Computers, materials & continua |
| PublicationYear | 2022 |
| Publisher | Tech Science Press |
| Publisher_xml | – name: Tech Science Press |
| References | Ramirez (ref10) 2021; 9 Villaverde (ref13) 2020; 9 Sreenidhi (ref3) 2020; 8 Deng (ref17) 2018; 18 Khan (ref6) 2021; 9 Torti (ref7) 2018 ref22 Mauldin (ref8) 2018; 18 ref21 Sangeetha (ref12) 2020; 12 ref16 Sultana (ref5) 2021; 23 Soni (ref14) 2020 Galvão (ref4) 2021; 168 Hashim (ref18) 2021; 51 Thakur (ref2) 2021; 10 Vaiyapuri (ref9) 2021; 9 Panda (ref20) 2021; 80 Bhattacharya (ref1) 2020; 20 Fathy (ref19) 2021; 14 Mrozek (ref11) 2020; 537 Nari (ref15) 2016 |
| References_xml | – start-page: 405 year: 2018 ident: ref7 article-title: Embedded real-time fall detection with deep learning on wearable devices – volume: 9 start-page: 113879 year: 2021 ident: ref9 article-title: Internet of things and deep learning enabled elderly fall detection model for smart homecare publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3094243 – volume: 23 start-page: 328 year: 2021 ident: ref5 article-title: Classification of indoor human fall events using deep learning publication-title: Entropy doi: 10.3390/e23030328 – volume: 168 start-page: 114226 year: 2021 ident: ref4 article-title: A multimodal approach using deep learning for fall detection publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2020.114226 – volume: 537 start-page: 132 year: 2020 ident: ref11 article-title: Fall detection in older adults with mobile IoT devices and machine learning in the cloud and on the edge publication-title: Information Sciences doi: 10.1016/j.ins.2020.05.070 – volume: 20 start-page: 5072 year: 2020 ident: ref1 article-title: Deep learning radar design for breathing and fall detection publication-title: IEEE Sensors Journal doi: 10.1109/JSEN.2020.2967100 – volume: 14 start-page: 1 year: 2021 ident: ref19 article-title: Archimedes optimization algorithm based maximum power point tracker for wind energy generation system publication-title: Ain Shams Engineering Journal – volume: 12 start-page: 232 year: 2020 ident: ref12 article-title: Fall detection for elderly people using video-based analysis publication-title: Journal of Advanced Research in Dynamical and Control Systems doi: 10.5373/JARDCS/V12SP7/20202102 – ident: ref21 – volume: 18 start-page: 3363 year: 2018 ident: ref8 article-title: SmartFall: A smartwatch-based fall detection system using deep learning publication-title: Sensors doi: 10.3390/s18103363 – volume: 80 year: 2021 ident: ref20 article-title: Oppositional salp swarm algorithm with mutation operator for global optimization and application in training higher order neural networks publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-020-10304-x – ident: ref22 – volume: 9 start-page: 1831 year: 2020 ident: ref13 article-title: A simulator to support machine learning-based wearable fall detection systems publication-title: Electronics doi: 10.3390/electronics9111831 – volume: 51 start-page: 1531 year: 2021 ident: ref18 article-title: Archimedes optimization algorithm: A new metaheuristic algorithm for solving optimization problems publication-title: Applied Intelligence doi: 10.1007/s10489-020-01893-z – start-page: 229 year: 2020 ident: ref14 article-title: An approach to enhance fall detection using machine learning classifier – volume: 10 start-page: 39 year: 2021 ident: ref2 article-title: A study of fall detection in assisted living: Identifying and improving the optimal machine learning method publication-title: JSAN doi: 10.3390/jsan10030039 – volume: 8 start-page: 780 year: 2020 ident: ref3 article-title: Real-time human fall detection and emotion recognition using embedded device and deep learning publication-title: International Journal of Emerging Trends in Engineering Research doi: 10.30534/ijeter/2020/28832020 – volume: 9 start-page: 131614 year: 2021 ident: ref6 article-title: 3D hand gestures segmentation and optimized classification using deep learning publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3114871 – start-page: 88 year: 2016 ident: ref15 article-title: A simple design of wearable device for fall detection with accelerometer and gyroscope – ident: ref16 – volume: 18 start-page: 3153 year: 2018 ident: ref17 article-title: Hyperspectral image classification with capsule network using limited training samples publication-title: Sensors doi: 10.3390/s18093153 – volume: 9 start-page: 33532 year: 2021 ident: ref10 article-title: Fall detection and activity recognition using human skeleton features publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061626 |
| SSID | ssj0036390 |
| Score | 2.2470274 |
| Snippet | Human fall detection (FD) acts as an important part in creating sensor based alarm system, enabling physical therapists to minimize the effect of fall events... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2713 |
| SubjectTerms | Alarm systems Algorithms Deep learning Fall detection Feature extraction Image enhancement Image quality Machine learning Optimization Optimization algorithms Performance enhancement Radial basis function |
| Title | Improved Archimedes Optimization Algorithm with Deep Learning Empowered Fall Detection System |
| URI | https://www.proquest.com/docview/2646011212 |
| Volume | 72 |
| WOSCitedRecordID | wos000779564300032&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: BENPR dateStart: 20040101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1546-2226 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0036390 issn: 1546-2226 databaseCode: PIMPY dateStart: 20040101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwELWgZWChfIpCQR5YGExTx_nwhAq0goESIZDKgCLHdgpSm4Y28Ps5J04RCwtThoutKGff853t9xA640o6ggtBtOtKwhLHJUIqn4jU90WP0oQ7aSk2EYxG4XjMI1twW9pjlXVMLAO1mktTI-8CcEPu0INIe5l_EKMaZXZXrYTGOmoapjLWQM2rwSh6rGOxC_hbXon0mE8ooFm1UQlLFod15cxQGFJ6AbBPbVllBUy_43IJNsPWfz9zG23ZZSbuV-NiB63pbBe1agkHbGf0Hnqtigpa4ZKCFqBRL_EDhJGZvZ-J-9MJ9F-8zbAp2eIbrXNsSVkneDDLjcoaNB-K6RSMRXmyK8MVEfo-eh4Onq5viVVcIJIytyB-qCClCZWSAFqKJdwwB6SSu2lPc7AEOmHKl0IF2kh0pCLpaYcmruSpMiI-7gFqZPNMHyIM65BUe0yYmMEoCwVkRqn0tA68QDuhaKNu_btjaenIjSrGNIa0pHRQDA6KjYPiykFtdL5qkVdUHH-826ndE9tJuYx_fHP0t_kYbZq-qkpLBzWKxac-QRvyq3hfLk7tGINndHcfvXwDf8TcoA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7RUKlcCH0goIH60B56cLPxOvs4oCoCIiKSNIdUSg_V1mvPAlISQrIU8af4jR3vekFcuHHo2WtLXn_65mHPfACfY6M9FSvF0fc1l6nnc6VNwFUWBKolRBp7WSE2EQ6H0WQSj9bgvqqFsc8qK04siNpcaZsjb5LhptihRUz7fXHNrWqUvV2tJDRKWJzh3S2FbKvD3jGd7xchuifjo1PuVAW4FtLPeRAZctsjYzQRs5FpbKvjMx37WQtjGgkxlSbQyoRoZSgylbbQE6mv48xYoRqf1n0F65LAHtVgfdQbjH5V3O-TvS9KMNsy4IKsZ3kxSi6SJ5t6ZlsmCvGN3Azh0jgPhvCpHSiMW7f-v_2WLdh0bjTrlLh_C2s4fwf1SqKCOcZ6D7_LpAkaVrTYJdOPK_aDaHLm6k9ZZ3pO-8kvZsympNkx4oK5prPn7GS2sCpyNL2rplMazIuXa3NWNnr_AD9fZJPbUJtfzXEHGPlZGbalspwohYwURX6ZbiOG7RC9SO1CszreRLt261b1Y5pQ2FUAIiFAJBYQSQmIXfj6MGNRthp55ttGBYfEkc4qecTC3vPDn-DN6XjQT_q94dlH2LDrllmlBtTy5Q3uw2v9N79cLQ8cvhn8eWns_AMbajpv |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Archimedes+Optimization+Algorithm+with+Deep+Learning+Empowered+Fall+Detection+System&rft.jtitle=Computers%2C+materials+%26+continua&rft.au=Saleh+Alluhaidan%2C+Ala&rft.au=Alajmi%2C+Masoud&rft.au=N.+Al-Wesabi%2C+Fahd&rft.au=Mustafa+Hilal%2C+Anwer&rft.date=2022&rft.issn=1546-2226&rft.volume=72&rft.issue=2&rft.spage=2713&rft.epage=2727&rft_id=info:doi/10.32604%2Fcmc.2022.025202&rft.externalDBID=n%2Fa&rft.externalDocID=10_32604_cmc_2022_025202 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1546-2226&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1546-2226&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1546-2226&client=summon |