Pollution risk assessment by designing predictive binary classification models of substituted benzenes centered on data mining and machine learning techniques
There is a growing need for industry and global regulatory agencies to develop rapid chemical safety assessment through more reliable theoretical models. Thus , quantitative structure–toxicity relationship (QSTR) models are preferred by regulators to bring chemicals to market rather than long and ex...
Uloženo v:
| Vydáno v: | Environmental science and pollution research international Ročník 32; číslo 35; s. 21092 - 21116 |
|---|---|
| Hlavní autoři: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.07.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 1614-7499, 0944-1344, 1614-7499 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!