Brief review of the development of theories of robustness, roughness and bifurcations of dynamic systems

The development issues of theories of robustness, roughness and bifurcations of dynamic systems are considered. In the modern theory of dynamic systems and automatic control systems, researches of the properties of roughness and robustness of systems are becoming more and more important. The work co...

Full description

Saved in:
Bibliographic Details
Published in:Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Vol. 23; no. 2; pp. 263 - 270
Main Author: Omorov, R.O.
Format: Journal Article
Language:English
Published: ITMO University 01.12.2024
Subjects:
ISSN:2226-1494, 2500-0373
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The development issues of theories of robustness, roughness and bifurcations of dynamic systems are considered. In the modern theory of dynamic systems and automatic control systems, researches of the properties of roughness and robustness of systems are becoming more and more important. The work considers methods of research and ensuring robust stability of interval dynamic systems of both algebraic and frequency directions of robust stability. The main results of the original algebraic method of robust stability for continuous and discrete time are given. In the frequency direction of robust stability, the issues of a frequency-robust method to the analysis and synthesis of robust multidimensional control systems based on the use of the frequency condition number of the transfer matrix of the “input-output” ratio are considered. The main provisions of the theory and method of topological roughness of dynamic systems based on the concept of roughness according to Andronov-Pontryagin are presented with the introduction of a measure of roughness of systems in the form of a condition number of matrices of reduction to a diagonal (quasi- diagonal) basis at special points of phase space. Criteria for dynamic systems bifurcations are formulated. Applications of the topological roughness method to synergetic systems and chaos have been used to investigate many systems, such as Lorenz and Rössler attractors, Belousov-Jabotinsky, Chua systems, “predator-prey” and “predator-prey-food”, Hopf bifurcation, Schumpeter and Caldor economic systems, Henon mapping, and others. For research of weakly formalized and non-formalized systems, the use of the approach of analogies of theoretical-multiple topology and the abstract method to such systems is proposed. Further research suggests the development of roughness and bifurcation theories for complex nonlinear dynamical systems.
AbstractList The development issues of theories of robustness, roughness and bifurcations of dynamic systems are considered. In the modern theory of dynamic systems and automatic control systems, researches of the properties of roughness and robustness of systems are becoming more and more important. The work considers methods of research and ensuring robust stability of interval dynamic systems of both algebraic and frequency directions of robust stability. The main results of the original algebraic method of robust stability for continuous and discrete time are given. In the frequency direction of robust stability, the issues of a frequency-robust method to the analysis and synthesis of robust multidimensional control systems based on the use of the frequency condition number of the transfer matrix of the “input-output” ratio are considered. The main provisions of the theory and method of topological roughness of dynamic systems based on the concept of roughness according to Andronov-Pontryagin are presented with the introduction of a measure of roughness of systems in the form of a condition number of matrices of reduction to a diagonal (quasi- diagonal) basis at special points of phase space. Criteria for dynamic systems bifurcations are formulated. Applications of the topological roughness method to synergetic systems and chaos have been used to investigate many systems, such as Lorenz and Rössler attractors, Belousov-Jabotinsky, Chua systems, “predator-prey” and “predator-prey-food”, Hopf bifurcation, Schumpeter and Caldor economic systems, Henon mapping, and others. For research of weakly formalized and non-formalized systems, the use of the approach of analogies of theoretical-multiple topology and the abstract method to such systems is proposed. Further research suggests the development of roughness and bifurcation theories for complex nonlinear dynamical systems.
Author Omorov, R.O.
Author_xml – sequence: 1
  givenname: R.O.
  orcidid: 0000-0003-3555-1323
  surname: Omorov
  fullname: Omorov, R.O.
BookMark eNo9UV1LAzEQDKJg1f6He_DR071NLrkDX1T8KBR80eeQXjZtpL2U5Kr035urHzDsDsswCzNn7LgPPTF2WcF1pepG3iCiLCvRihIBeTmiRJmngiM2wRqgBK74ceZ_ylM2TekDACqVB-KEre6jJ1dE-vT0VQRXDCsqLH3SOmw31A-_p5BVaeQxLHZp6Cmlq8x3y9VIC9PbYuHdLnZm8KE_KO2-NxvfFWmfBtqkC3bizDrR9Hefs_enx7eHl3L--jx7uJuXHQoOpZUCa0ECrSBOtcWmaVQlgCwpYVRNHQeHsEDZWGkaCdYgWVVJR9ZRA_yczX58bTAfehv9xsS9DsbrwyHEpTZx8N2atGs5cEBFuAAhO9HylpMEcNCq_MJlr9sfry6GlCK5f78K9KEEPUarx2j1WIIeoXMJOpfAvwH4iX0m
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.17586/2226-1494-2023-23-2-263-270
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2500-0373
EndPage 270
ExternalDocumentID oai_doaj_org_article_f9303027e2b046c49393e600f09720bf
10_17586_2226_1494_2023_23_2_263_270
GroupedDBID 642
AAYXX
ADBBV
AFKRA
ALMA_UNASSIGNED_HOLDINGS
BCNDV
BENPR
BPHCQ
BYOGL
CITATION
GROUPED_DOAJ
KQ8
PIMPY
PQQKQ
PROAC
VCL
VIT
ID FETCH-LOGICAL-c2430-d64254e42d4e3e5d28887140ede74a75ec30f20b268d6a860da2ed716fedfe803
IEDL.DBID DOA
ISSN 2226-1494
IngestDate Mon Nov 03 22:07:14 EST 2025
Sat Nov 29 03:57:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2430-d64254e42d4e3e5d28887140ede74a75ec30f20b268d6a860da2ed716fedfe803
ORCID 0000-0003-3555-1323
OpenAccessLink https://doaj.org/article/f9303027e2b046c49393e600f09720bf
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_f9303027e2b046c49393e600f09720bf
crossref_primary_10_17586_2226_1494_2023_23_2_263_270
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki
PublicationYear 2024
Publisher ITMO University
Publisher_xml – name: ITMO University
SSID ssj0001700022
ssib026971427
Score 2.2755659
Snippet The development issues of theories of robustness, roughness and bifurcations of dynamic systems are considered. In the modern theory of dynamic systems and...
SourceID doaj
crossref
SourceType Open Website
Index Database
StartPage 263
SubjectTerms бифуркация систем
интервальные динамические системы
матричное уравнение сильвестра
метод топологической грубости
многомерные системы управления
особые точки и траектории
робастность систем управления
синергетические системы
хаос
частотно-робастный метод
частотное число обусловленности
число обусловленности матрицы
Title Brief review of the development of theories of robustness, roughness and bifurcations of dynamic systems
URI https://doaj.org/article/f9303027e2b046c49393e600f09720bf
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2500-0373
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001700022
  issn: 2226-1494
  databaseCode: DOA
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA4iInoQn1hf5NCjodsk-8hRxeJBigeV3kKySbAedmXb-vud2ax1PXkRcghhH-HLMDNfSL4hZOicdEWWOFYqKxn0wQ_aYLG-CVgU5BuhFdJ-fcyn02I2U0-9Ul94JizKA0fgRkGBkwXu5LkFKldKJZTwEKUD6s4kNqD3haynR6bAknim8rHs9C3fo0gMRiusNAf5BgNaILfJED0G5MvZaD3IsJo4w8Z4JvCy1q941ZP1b-PPZJ_sdYkjvYkTPiAbvjokuz05wSPyBkzfBxpvo9A6UEjuqPs5FdQN1ciOsd_UdrVYoq-7pm21HuxSUzlq52HVdJt5-KSLdetp1H1eHJOXyf3z3QPrKimwkkuRMAcsI5Vecie98KnjwHtRqc87n0uTp74USQA0eVa4zODaGe4dUKngXfBFIk7IZlVX_pRQWABRjmVprBLSpMoY43yZ88zA6sJvBiT9xkt_RMEMjUQDcdaIs0acNeKssWnAWQPOA3KL4K7fQdnrdgCMQXfGoP8yhrP_-Mg52YHZyXhm5YJsLpuVvyRb5edyvmiuWjv7AlojzuI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brief+review+of+the+development+of+theories+of+robustness%2C+roughness+and+bifurcations+of+dynamic+systems&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=R.+O.+Omorov&rft.date=2024-12-01&rft.pub=ITMO+University&rft.issn=2226-1494&rft.eissn=2500-0373&rft.volume=23&rft.issue=2&rft.spage=263&rft.epage=270&rft_id=info:doi/10.17586%2F2226-1494-2023-23-2-263-270&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f9303027e2b046c49393e600f09720bf
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon