Brief review of the development of theories of robustness, roughness and bifurcations of dynamic systems
The development issues of theories of robustness, roughness and bifurcations of dynamic systems are considered. In the modern theory of dynamic systems and automatic control systems, researches of the properties of roughness and robustness of systems are becoming more and more important. The work co...
Uloženo v:
| Vydáno v: | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki Ročník 23; číslo 2; s. 263 - 270 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
ITMO University
01.12.2024
|
| Témata: | |
| ISSN: | 2226-1494, 2500-0373 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The development issues of theories of robustness, roughness and bifurcations of dynamic systems are considered. In the modern theory of dynamic systems and automatic control systems, researches of the properties of roughness and robustness of systems are becoming more and more important. The work considers methods of research and ensuring robust stability of interval dynamic systems of both algebraic and frequency directions of robust stability. The main results of the original algebraic method of robust stability for continuous and discrete time are given. In the frequency direction of robust stability, the issues of a frequency-robust method to the analysis and synthesis of robust multidimensional control systems based on the use of the frequency condition number of the transfer matrix of the “input-output” ratio are considered. The main provisions of the theory and method of topological roughness of dynamic systems based on the concept of roughness according to Andronov-Pontryagin are presented with the introduction of a measure of roughness of systems in the form of a condition number of matrices of reduction to a diagonal (quasi- diagonal) basis at special points of phase space. Criteria for dynamic systems bifurcations are formulated. Applications of the topological roughness method to synergetic systems and chaos have been used to investigate many systems, such as Lorenz and Rössler attractors, Belousov-Jabotinsky, Chua systems, “predator-prey” and “predator-prey-food”, Hopf bifurcation, Schumpeter and Caldor economic systems, Henon mapping, and others. For research of weakly formalized and non-formalized systems, the use of the approach of analogies of theoretical-multiple topology and the abstract method to such systems is proposed. Further research suggests the development of roughness and bifurcation theories for complex nonlinear dynamical systems. |
|---|---|
| AbstractList | The development issues of theories of robustness, roughness and bifurcations of dynamic systems are considered. In the modern theory of dynamic systems and automatic control systems, researches of the properties of roughness and robustness of systems are becoming more and more important. The work considers methods of research and ensuring robust stability of interval dynamic systems of both algebraic and frequency directions of robust stability. The main results of the original algebraic method of robust stability for continuous and discrete time are given. In the frequency direction of robust stability, the issues of a frequency-robust method to the analysis and synthesis of robust multidimensional control systems based on the use of the frequency condition number of the transfer matrix of the “input-output” ratio are considered. The main provisions of the theory and method of topological roughness of dynamic systems based on the concept of roughness according to Andronov-Pontryagin are presented with the introduction of a measure of roughness of systems in the form of a condition number of matrices of reduction to a diagonal (quasi- diagonal) basis at special points of phase space. Criteria for dynamic systems bifurcations are formulated. Applications of the topological roughness method to synergetic systems and chaos have been used to investigate many systems, such as Lorenz and Rössler attractors, Belousov-Jabotinsky, Chua systems, “predator-prey” and “predator-prey-food”, Hopf bifurcation, Schumpeter and Caldor economic systems, Henon mapping, and others. For research of weakly formalized and non-formalized systems, the use of the approach of analogies of theoretical-multiple topology and the abstract method to such systems is proposed. Further research suggests the development of roughness and bifurcation theories for complex nonlinear dynamical systems. |
| Author | Omorov, R.O. |
| Author_xml | – sequence: 1 givenname: R.O. orcidid: 0000-0003-3555-1323 surname: Omorov fullname: Omorov, R.O. |
| BookMark | eNo9UV1LAzEQDKJg1f6He_DR071NLrkDX1T8KBR80eeQXjZtpL2U5Kr035urHzDsDsswCzNn7LgPPTF2WcF1pepG3iCiLCvRihIBeTmiRJmngiM2wRqgBK74ceZ_ylM2TekDACqVB-KEre6jJ1dE-vT0VQRXDCsqLH3SOmw31A-_p5BVaeQxLHZp6Cmlq8x3y9VIC9PbYuHdLnZm8KE_KO2-NxvfFWmfBtqkC3bizDrR9Hefs_enx7eHl3L--jx7uJuXHQoOpZUCa0ECrSBOtcWmaVQlgCwpYVRNHQeHsEDZWGkaCdYgWVVJR9ZRA_yczX58bTAfehv9xsS9DsbrwyHEpTZx8N2atGs5cEBFuAAhO9HylpMEcNCq_MJlr9sfry6GlCK5f78K9KEEPUarx2j1WIIeoXMJOpfAvwH4iX0m |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.17586/2226-1494-2023-23-2-263-270 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2500-0373 |
| EndPage | 270 |
| ExternalDocumentID | oai_doaj_org_article_f9303027e2b046c49393e600f09720bf 10_17586_2226_1494_2023_23_2_263_270 |
| GroupedDBID | 642 AAYXX ADBBV AFKRA ALMA_UNASSIGNED_HOLDINGS BCNDV BENPR BPHCQ BYOGL CITATION GROUPED_DOAJ KQ8 PIMPY PQQKQ PROAC VCL VIT |
| ID | FETCH-LOGICAL-c2430-d64254e42d4e3e5d28887140ede74a75ec30f20b268d6a860da2ed716fedfe803 |
| IEDL.DBID | DOA |
| ISSN | 2226-1494 |
| IngestDate | Mon Nov 03 22:07:14 EST 2025 Sat Nov 29 03:57:45 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2430-d64254e42d4e3e5d28887140ede74a75ec30f20b268d6a860da2ed716fedfe803 |
| ORCID | 0000-0003-3555-1323 |
| OpenAccessLink | https://doaj.org/article/f9303027e2b046c49393e600f09720bf |
| PageCount | 8 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f9303027e2b046c49393e600f09720bf crossref_primary_10_17586_2226_1494_2023_23_2_263_270 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Nauchno-tekhnicheskiĭ vestnik informat͡s︡ionnykh tekhnologiĭ, mekhaniki i optiki |
| PublicationYear | 2024 |
| Publisher | ITMO University |
| Publisher_xml | – name: ITMO University |
| SSID | ssj0001700022 ssib026971427 |
| Score | 2.2755659 |
| Snippet | The development issues of theories of robustness, roughness and bifurcations of dynamic systems are considered. In the modern theory of dynamic systems and... |
| SourceID | doaj crossref |
| SourceType | Open Website Index Database |
| StartPage | 263 |
| SubjectTerms | бифуркация систем интервальные динамические системы матричное уравнение сильвестра метод топологической грубости многомерные системы управления особые точки и траектории робастность систем управления синергетические системы хаос частотно-робастный метод частотное число обусловленности число обусловленности матрицы |
| Title | Brief review of the development of theories of robustness, roughness and bifurcations of dynamic systems |
| URI | https://doaj.org/article/f9303027e2b046c49393e600f09720bf |
| Volume | 23 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2500-0373 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001700022 issn: 2226-1494 databaseCode: DOA dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8QwEA0iInoQP3H9Ioc9Gjabpml7VHHxtHhQ2Ftomgmuh1b2w9_vTFPXevIi5BBCW8rrMPNeSd4wNlRBhjJ1RqReZUInyolCBSO8C1iNcwyZMrTNJrLpNJ_Niudeqy_aExbtgSNwo1BgkkXtBMqhlKt0kRQJYJUO5DsjXaDsi6ynJ6YwkpQpsrHu_C3fo0kMVSvqNId8Q6As0LtsSBkD-bIZbRYFdRMXNIQyCR3W-lWverb-bf2ZHLKDjjjyu_jCR2wL6mO237MTPGFvqPQh8HgahTeBI7nj_mdXULfUkDqm-aJx6-WKct0tb7v10JSXteduHtaL7mceXelj33oefZ-Xp-x18vjy8CS6TgqiUjqRwqPKSDVo5TUkgJ8FdS859YGHTJdZClUiA6KpTO5NmRvpSwUepVQAHyCXyRnbrpsazhmXrhpDIVMSb1p64pdIurw0DkqkE27A0m-87Ec0zLAkNAhnSzhbwtkSzpaGRZwt4jxg9wTu5h6yvW4XMBhsFwz2r2C4-I-HXLI9fDsd96xcse3VYg3XbKf6XM2Xi5s2zr4AGqvOaA |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Brief+review+of+the+development+of+theories+of+robustness%2C+roughness+and+bifurcations+of+dynamic+systems&rft.jtitle=Nauchno-tekhnicheski%C4%AD+vestnik+informat%CD%A1s%EF%B8%A1ionnykh+tekhnologi%C4%AD%2C+mekhaniki+i+optiki&rft.au=R.+O.+Omorov&rft.date=2024-12-01&rft.pub=ITMO+University&rft.issn=2226-1494&rft.eissn=2500-0373&rft.volume=23&rft.issue=2&rft.spage=263&rft.epage=270&rft_id=info:doi/10.17586%2F2226-1494-2023-23-2-263-270&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f9303027e2b046c49393e600f09720bf |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2226-1494&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2226-1494&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2226-1494&client=summon |