Online Distributed Optimization With Nonconvex Objective Functions Via Dynamic Regrets

In this paper, the problem of online distributed optimization subject to a convex set is studied by employing a network of agents, where the objective functions allocated to agents are nonconvex. Each agent only has access to its own objective function information at the previous time, and can only...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automatic control Jg. 68; H. 11; S. 1 - 16
Hauptverfasser: Lu, Kaihong, Wang, Long
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0018-9286, 1558-2523
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!