Online Distributed Optimization With Nonconvex Objective Functions Via Dynamic Regrets

In this paper, the problem of online distributed optimization subject to a convex set is studied by employing a network of agents, where the objective functions allocated to agents are nonconvex. Each agent only has access to its own objective function information at the previous time, and can only...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 68; číslo 11; s. 1 - 16
Hlavní autoři: Lu, Kaihong, Wang, Long
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In this paper, the problem of online distributed optimization subject to a convex set is studied by employing a network of agents, where the objective functions allocated to agents are nonconvex. Each agent only has access to its own objective function information at the previous time, and can only communicate with its immediate neighbors via a time-varying directed graph. To tackle this problem, first, a new online distributed algorithm with gradient information is proposed based on consensus algorithms and projection-free strategies. Of particular interest is that dynamic regrets, whose offline benchmarks are to pursue the stationary points at each time, are employed to measure the performance of the algorithm. In the worst case, the difficulty in achieving sublinear bounds of dynamic regrets is characterized by the deviation in the objective function sequence, as well as the deviation in the gradient sequence. Under mild assumptions on the graph and the objective functions, we prove that if the deviation in the objective function sequence is sublinear with the square root of the time horizon, and if the deviation in the gradient sequence is sublinear with the time horizon, then dynamic regrets grow sublinearly. Second, considering the case where the gradient information of the objective functions is not available, we propose a zeroth-order online distributed projection-free algorithm, by which agents make decisions only depending on the random zeroth-order oracle. It turns out that under the same conditions as in the first case, if the smoothing parameters in the random zeroth-order oracles scale inversely with the time horizon, then the expectations of dynamic regrets increase sublinearly. Finally, simulations are presented to demonstrate the effectiveness of our theoretical results.
AbstractList In this paper, the problem of online distributed optimization subject to a convex set is studied by employing a network of agents, where the objective functions allocated to agents are nonconvex. Each agent only has access to its own objective function information at the previous time, and can only communicate with its immediate neighbors via a time-varying directed graph. To tackle this problem, first, a new online distributed algorithm with gradient information is proposed based on consensus algorithms and projection-free strategies. Of particular interest is that dynamic regrets, whose offline benchmarks are to pursue the stationary points at each time, are employed to measure the performance of the algorithm. In the worst case, the difficulty in achieving sublinear bounds of dynamic regrets is characterized by the deviation in the objective function sequence, as well as the deviation in the gradient sequence. Under mild assumptions on the graph and the objective functions, we prove that if the deviation in the objective function sequence is sublinear with the square root of the time horizon, and if the deviation in the gradient sequence is sublinear with the time horizon, then dynamic regrets grow sublinearly. Second, considering the case where the gradient information of the objective functions is not available, we propose a zeroth-order online distributed projection-free algorithm, by which agents make decisions only depending on the random zeroth-order oracle. It turns out that under the same conditions as in the first case, if the smoothing parameters in the random zeroth-order oracles scale inversely with the time horizon, then the expectations of dynamic regrets increase sublinearly. Finally, simulations are presented to demonstrate the effectiveness of our theoretical results.
In this article, the problem of online distributed optimization subject to a convex set is studied by employing a network of agents, where the objective functions allocated to agents are nonconvex. Each agent only has access to its own objective function information at the previous time, and can only communicate with its immediate neighbors via a time-varying directed graph. To tackle this problem, first, a new online distributed algorithm with gradient information is proposed based on consensus algorithms and projection-free strategies. Of particular interest is that dynamic regrets, whose offline benchmarks are to pursue the stationary points at each time, are employed to measure the performance of the algorithm. Under mild assumptions on the graph and the objective functions, we prove that if the deviation in the objective function sequence is sublinear with the square root of the time horizon, and if the deviation in the gradient sequence is sublinear with the time horizon, then dynamic regrets grow sublinearly. Second, considering the case where the gradient information of the objective functions is not available, we propose a zeroth-order online distributed projection-free algorithm, by which agents make decisions only depending on the random zeroth-order oracle. It turns out that under the same conditions as in the first case, if the smoothing parameters in the random zeroth-order oracles scale inversely with the time horizon, then the expectations of dynamic regrets increase sublinearly. Finally, simulations are presented to demonstrate the effectiveness of our theoretical results.
Author Wang, Long
Lu, Kaihong
Author_xml – sequence: 1
  givenname: Kaihong
  orcidid: 0000-0002-5265-7800
  surname: Lu
  fullname: Lu, Kaihong
  organization: College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao, China
– sequence: 2
  givenname: Long
  orcidid: 0000-0001-5600-8157
  surname: Wang
  fullname: Wang, Long
  organization: Center for Systems and Control, College of Engineering, China
BookMark eNp9kMFPwjAUhxujiYDePXho4nn41q7deiQgakIkMYjHZevetAQ6bAsR_3qHcDAePL285Pe9X97XJae2sUjIVQz9OAZ1OxsM-wwY73PGVcLZCenEQmQRE4yfkg5AnEWKZfKcdL1ftKtMkrhD5lO7NBbpyPjgTLkJWNHpOpiV-SqCaSx9NeGdPjVWN3aLn3RaLlAHs0U63li9T3g6NwUd7WyxMpo-45vD4C_IWV0sPV4eZ4-8jO9mw4doMr1_HA4mkWYJh0jWqqxlqqBMsGRZXHCpmAaECopKyVTwLBW1UhVL22SZJRpElaQcpaigFsh75OZwd-2ajw36kC-ajbNtZc6yjImUCQltCg4p7RrvHdb52plV4XZ5DPneXt7ay_f28qO9FpF_EG3Cj5HgCrP8D7w-gAYRf_UAa58B_g3Q4X45
CODEN IETAA9
CitedBy_id crossref_primary_10_1016_j_automatica_2023_111203
crossref_primary_10_1016_j_automatica_2023_111501
crossref_primary_10_1109_TNSE_2024_3401748
crossref_primary_10_1016_j_automatica_2025_112525
crossref_primary_10_1080_00207721_2024_2388810
crossref_primary_10_1016_j_sigpro_2024_109827
crossref_primary_10_1109_LSP_2025_3551202
crossref_primary_10_1109_TCNS_2024_3372889
crossref_primary_10_1016_j_automatica_2024_111863
crossref_primary_10_1016_j_jfranklin_2025_107902
crossref_primary_10_1109_TNSE_2024_3409061
crossref_primary_10_1007_s11768_023_00181_8
crossref_primary_10_1109_LCSYS_2023_3282021
crossref_primary_10_1109_TSMC_2024_3525011
crossref_primary_10_1016_j_knosys_2024_112582
crossref_primary_10_1007_s11432_023_4086_5
crossref_primary_10_1016_j_automatica_2024_112068
crossref_primary_10_1016_j_jfranklin_2025_107530
crossref_primary_10_1109_ACCESS_2025_3556719
crossref_primary_10_1109_TICPS_2025_3538690
Cites_doi 10.1109/TAC.2020.3002592
10.1109/JSEN.2017.2725638
10.1109/TSP.2021.3051871
10.1109/TAC.2017.2743462
10.1109/TAC.2021.3128592
10.1109/CDC40024.2019.9029852
10.1007/978-3-319-19072-3
10.1109/TKDE.2012.191
10.1109/TSP.2012.2198470
10.1007/s10107-020-01487-0
10.1109/TSIPN.2016.2524588
10.1016/j.automatica.2019.03.015
10.1109/TAC.2020.3021011
10.1109/TCNS.2017.2698261
10.1109/TAC.2010.2041610
10.1109/CDC.2005.1582620
10.1007/s10208-015-9296-2
10.1109/TAC.2017.2650563
10.1007/s11432-007-0044-3
10.1109/TAC.2021.3091096
10.1109/TAC.2020.2987379
10.1287/opre.2015.1408
10.1109/TAC.2017.2771140
10.1109/CDC40024.2019.9029474
10.1109/TSP.2018.2890368
10.1002/acs.916
10.1109/TAC.2018.2828093
10.1109/TSP.2016.2637317
10.1109/TAC.2017.2685559
10.1109/TAC.2014.2364096
10.1109/IEEECONF53345.2021.9723285
10.1109/TAC.2016.2593899
10.1109/TCNS.2015.2505149
10.1016/j.automatica.2019.108703
10.1109/TAC.2008.2009515
10.1016/j.automatica.2016.08.007
10.1109/TAC.2019.2915745
10.1109/TAC.2021.3057601
10.1109/TAC.2016.2525928
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
DOI 10.1109/TAC.2023.3239432
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 16
ExternalDocumentID 10_1109_TAC_2023_3239432
10025380
Genre orig-research
GrantInformation_xml – fundername: PKU-Baidu Fund
  grantid: 2020BD017
– fundername: Major Basic Research of Natural Science Foundation of Shandong Province
  grantid: ZR2021ZD14
– fundername: High-level Talent Team Project of Qingdao West Coast New Area
  grantid: RCTD-JC-2019-05
– fundername: Key Research and Development Program of Shandong Province
  grantid: 2020CXGC01208
– fundername: Science and Technology Project of Qingdao West Coast New Area
  grantid: 2019-32, 2020-20, 2020-1-4
– fundername: National Natural Science Foundation of China
  grantid: 62103169; 62036002; 61821004; 62250056
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
~02
3EH
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFJZH
VH1
VJK
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c2430-6f9bf6790b4eb281a3692c0e0d0ad96753875f99d27f9bb84c05d473e65d0f5e3
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Mon Jun 30 08:29:46 EDT 2025
Sat Nov 29 05:41:07 EST 2025
Tue Nov 18 22:35:33 EST 2025
Mon Aug 04 05:48:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2430-6f9bf6790b4eb281a3692c0e0d0ad96753875f99d27f9bb84c05d473e65d0f5e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5265-7800
0000-0001-5600-8157
PQID 2882572560
PQPubID 85475
PageCount 16
ParticipantIDs ieee_primary_10025380
crossref_primary_10_1109_TAC_2023_3239432
crossref_citationtrail_10_1109_TAC_2023_3239432
proquest_journals_2882572560
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
gidel (ref38) 0
ref11
ref10
ref17
chen (ref49) 2021
ref16
ref19
soomin (ref18) 2017; 62
ref50
krichene (ref39) 2015
ref46
nedi? (ref1) 2009; 54
ref48
ref42
ref41
ref44
ref43
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
assran (ref12) 0
ref35
ref36
ref31
ref30
ref33
ref32
hazan (ref47) 0
ref2
eshraghi (ref26) 0
ref24
ref25
ref20
ref22
ref21
zinkevich (ref14) 0
lacoste-julien (ref37) 2016
ref28
ref27
ref29
jadbabaie (ref23) 0
kohler (ref34) 0
jaggi (ref45) 0
References_xml – ident: ref24
  doi: 10.1109/TAC.2020.3002592
– ident: ref9
  doi: 10.1109/JSEN.2017.2725638
– ident: ref48
  doi: 10.1109/TSP.2021.3051871
– ident: ref25
  doi: 10.1109/TAC.2017.2743462
– ident: ref13
  doi: 10.1109/TAC.2021.3128592
– ident: ref31
  doi: 10.1109/CDC40024.2019.9029852
– ident: ref10
  doi: 10.1007/978-3-319-19072-3
– start-page: 398
  year: 0
  ident: ref23
  article-title: Online optimization: Competing with dynamic comparators
  publication-title: Proc 18th Int Conf Artif Intell Statist
– year: 2015
  ident: ref39
  article-title: Dual averaging on compactly-supported distributions and application to no-regret learning on a continuum
– ident: ref15
  doi: 10.1109/TKDE.2012.191
– ident: ref32
  doi: 10.1109/TSP.2012.2198470
– year: 2021
  ident: ref49
  article-title: Distributed optimization with projection-free dynamics
– ident: ref5
  doi: 10.1007/s10107-020-01487-0
– ident: ref33
  doi: 10.1109/TSIPN.2016.2524588
– ident: ref41
  doi: 10.1016/j.automatica.2019.03.015
– ident: ref29
  doi: 10.1109/TAC.2020.3021011
– start-page: 928
  year: 0
  ident: ref14
  article-title: Online convex programming and generalized infinitesimal gradient ascent
  publication-title: Proc Int Conf Mach Learn
– ident: ref4
  doi: 10.1109/TCNS.2017.2698261
– ident: ref44
  doi: 10.1109/TAC.2010.2041610
– ident: ref40
  doi: 10.1109/CDC.2005.1582620
– ident: ref50
  doi: 10.1007/s10208-015-9296-2
– volume: 62
  start-page: 6407
  year: 2017
  ident: ref18
  article-title: Stochastic dual averaging for decentralized online optimization on time-varying communication graphs
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2017.2650563
– ident: ref42
  doi: 10.1007/s11432-007-0044-3
– ident: ref36
  doi: 10.1109/TAC.2021.3091096
– start-page: 344
  year: 0
  ident: ref12
  article-title: Stochastic gradient push for distributed deep learning
  publication-title: Proc Int Conf Mach Learn
– start-page: 1895
  year: 0
  ident: ref34
  article-title: Sub-sampled cubic regularization for non-convex optimization
  publication-title: Proc Int Conf Mach Learn
– ident: ref19
  doi: 10.1109/TAC.2020.2987379
– start-page: 427
  year: 0
  ident: ref45
  article-title: Revisiting Frank-Wolfe: Projection-free sparse convex optimization
  publication-title: Proc Int Conf Mach Learn
– ident: ref21
  doi: 10.1287/opre.2015.1408
– ident: ref7
  doi: 10.1109/TAC.2017.2771140
– ident: ref30
  doi: 10.1109/CDC40024.2019.9029474
– ident: ref22
  doi: 10.1109/TSP.2018.2890368
– ident: ref43
  doi: 10.1002/acs.916
– ident: ref6
  doi: 10.1109/TAC.2018.2828093
– ident: ref35
  doi: 10.1109/TSP.2016.2637317
– ident: ref46
  doi: 10.1109/TAC.2017.2685559
– ident: ref2
  doi: 10.1109/TAC.2014.2364096
– start-page: 637
  year: 0
  ident: ref26
  article-title: Improving dynamic regret in distributed online mirror descent using primal and dual information
  publication-title: Proc Learn Dyn Control Conf
– year: 2016
  ident: ref37
  article-title: Convergence rate of Frank-Wolfe for non-convex objectives
– start-page: 1456
  year: 0
  ident: ref38
  article-title: Frank-Wolfe splitting via augmented Lagrangian method
  publication-title: Proc Int Conf Artif Intell Statist
– ident: ref28
  doi: 10.1109/IEEECONF53345.2021.9723285
– ident: ref3
  doi: 10.1109/TAC.2016.2593899
– ident: ref16
  doi: 10.1109/TCNS.2015.2505149
– ident: ref8
  doi: 10.1016/j.automatica.2019.108703
– volume: 54
  start-page: 48
  year: 2009
  ident: ref1
  article-title: Distributed subgradient methods for multi-agent optimization
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2008.2009515
– ident: ref11
  doi: 10.1016/j.automatica.2016.08.007
– start-page: 521
  year: 0
  ident: ref47
  article-title: Projection-free online learning
  publication-title: Proc Int Conf Mach Learn
– ident: ref27
  doi: 10.1109/TAC.2019.2915745
– ident: ref20
  doi: 10.1109/TAC.2021.3057601
– ident: ref17
  doi: 10.1109/TAC.2016.2525928
SSID ssj0016441
Score 2.5550041
Snippet In this paper, the problem of online distributed optimization subject to a convex set is studied by employing a network of agents, where the objective...
In this article, the problem of online distributed optimization subject to a convex set is studied by employing a network of agents, where the objective...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Benchmark testing
Convexity
Deviation
Distributed algorithms
Dynamic regrets
Graph theory
Heuristic algorithms
Linear programming
Mirrors
multi-agent networks
nonconvex optimization
online distributed optimization
Optimization
Power system dynamics
Title Online Distributed Optimization With Nonconvex Objective Functions Via Dynamic Regrets
URI https://ieeexplore.ieee.org/document/10025380
https://www.proquest.com/docview/2882572560
Volume 68
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCBzyICBXlgYUhrYieOx6qlYkAtQqV0ixLbEUWQojZF_HzOdloVIZDYMpyj6M6-u5fz3UPoUkiTZGvhU8G4z2ALgR-Mpa8AauQhTQVzjcJ3vN-Px2NxXzWr214YrbW9fKab5tHW8tVULsyvspYZFwoHFBD6JueRa9ZalQxMYHduF05wEK9qkkS0hu1O09CEN6khAqfBtxhkSVV-eGIbXnp7__ywfbRb5ZG47Qx_gDZ0cYh21qYLHqGRGyOKu2Y2rqG10goPwEO8Va2X-GlSPuP-tLA3zz_xIHtx3g_3INjZ_YhHkxR3HWk9ftCAzct5HT32boadW7-iUfBlAMr3o1xkecQFyRjA6Pg6pZEIJNFEkVQJAAwUMEsuhAo4SGYxkyRUjFMdhYrkoabHqFZMC32CMGMph5wJgpriLBdMqBASwpDI2FAqBqmHWkvFJrKaMW6oLl4TizWISMAUiTFFUpnCQ1erFe9uvsYfsnWj-jU5p3UPNZbGS6oTOE8CgA4hNwnd6S_LztC2ebtrLGygWjlb6HO0JT_KyXx2YTfXF4KsyXU
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEG8MmqgPfmJEUfvgiw-DunYffSQg0YjDGETeltF2EaPDwDD--V7bQTBGE9_2cM2Wu_bufrve_RA650In2Yo7lLPAYbCFwA-GwpEANVKPJpzZRuFOEEXhYMDvi2Z10wujlDKXz1RNP5pavhyLmf5VVtfjQuGAAkJf9RhziW3XWhQNdGi3jhfOsBsuqpKE13uNZk0ThdeopgKn7rcoZGhVfvhiE2Da2__8tB20VWSSuGFNv4tWVLaHNpfmC-6jvh0kilt6Oq4mtlISd8FHvBXNl_hplD_jaJyZu-efuDt8sf4PtyHcmR2J-6MEtyxtPX5QgM7zaRk9tq96zWunIFJwhAvqd_yUD1M_4GTIAEiHlwn1uSuIIpIkkgNkoIBaUs6lG4DkMGSCeJIFVPmeJKmn6AEqZeNMHSLMWBJA1gRhTQYs5YxLD1JCj4hQkyq6SQXV54qNRTFlXJNdvMYGbRAegylibYq4MEUFXSxWvNsJG3_IlrXql-Ss1iuoOjdeXJzBaewCePACndId_bLsDK1f9-46cecmuj1GG_pNts2wikr5ZKZO0Jr4yEfTyanZaF8pcsy8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Distributed+Optimization+With+Nonconvex+Objective+Functions+via+Dynamic+Regrets&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Lu%2C+Kaihong&rft.au=Wang%2C+Long&rft.date=2023-11-01&rft.issn=0018-9286&rft.eissn=1558-2523&rft.volume=68&rft.issue=11&rft.spage=6509&rft.epage=6524&rft_id=info:doi/10.1109%2FTAC.2023.3239432&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TAC_2023_3239432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon