Towards Probabilistic Inductive Logic Programming with Neurosymbolic Inference and Relaxation

Many inductive logic programming (ILP) methods are incapable of learning programs from probabilistic background knowledge, for example, coming from sensory data or neural networks with probabilities. We propose Propper, which handles flawed and probabilistic background knowledge by extending ILP wit...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theory and practice of logic programming Ročník 24; číslo 4; s. 628 - 643
Hlavní autoři: HILLERSTRÖM, FIEKE, BURGHOUTS, GERTJAN
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cambridge, UK Cambridge University Press 01.07.2024
Témata:
ISSN:1471-0684, 1475-3081
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Buďte první, kdo okomentuje tento záznam!
Nejprve se musíte přihlásit.