Towards Probabilistic Inductive Logic Programming with Neurosymbolic Inference and Relaxation
Many inductive logic programming (ILP) methods are incapable of learning programs from probabilistic background knowledge, for example, coming from sensory data or neural networks with probabilities. We propose Propper, which handles flawed and probabilistic background knowledge by extending ILP wit...
Uložené v:
| Vydané v: | Theory and practice of logic programming Ročník 24; číslo 4; s. 628 - 643 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Cambridge, UK
Cambridge University Press
01.07.2024
|
| Predmet: | |
| ISSN: | 1471-0684, 1475-3081 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | Many inductive logic programming (ILP) methods are incapable of learning programs from probabilistic background knowledge, for example, coming from sensory data or neural networks with probabilities. We propose Propper, which handles flawed and probabilistic background knowledge by extending ILP with a combination of neurosymbolic inference, a continuous criterion for hypothesis selection (binary cross-entropy) and a relaxation of the hypothesis constrainer (NoisyCombo). For relational patterns in noisy images, Propper can learn programs from as few as 8 examples. It outperforms binary ILP and statistical models such as a graph neural network. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1471-0684 1475-3081 |
| DOI: | 10.1017/S1471068424000371 |