Sum-of-squares relaxations for polynomial min–max problems over simple sets

We consider min–max optimization problems for polynomial functions, where a multivariate polynomial is maximized with respect to a subset of variables, and the resulting maximal value is minimized with respect to the remaining variables. When the variables belong to simple sets (e.g., a hypercube, t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 209; číslo 1; s. 475 - 501
Hlavní autor: Bach, Francis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider min–max optimization problems for polynomial functions, where a multivariate polynomial is maximized with respect to a subset of variables, and the resulting maximal value is minimized with respect to the remaining variables. When the variables belong to simple sets (e.g., a hypercube, the Euclidean hypersphere, or a ball), we derive a sum-of-squares formulation based on a primal-dual approach. In the simplest setting, we provide a convergence proof when the degree of the relaxation tends to infinity and observe empirically that it can be finitely convergent in several situations. Moreover, our formulation leads to an interesting link with feasibility certificates for polynomial inequalities based on Putinar’s Positivstellensatz.
ISSN:0025-5610
1436-4646
DOI:10.1007/s10107-024-02072-5