Sum-of-squares relaxations for polynomial min–max problems over simple sets

We consider min–max optimization problems for polynomial functions, where a multivariate polynomial is maximized with respect to a subset of variables, and the resulting maximal value is minimized with respect to the remaining variables. When the variables belong to simple sets (e.g., a hypercube, t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematical programming Ročník 209; číslo 1; s. 475 - 501
Hlavní autor: Bach, Francis
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.01.2025
Témata:
ISSN:0025-5610, 1436-4646
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract We consider min–max optimization problems for polynomial functions, where a multivariate polynomial is maximized with respect to a subset of variables, and the resulting maximal value is minimized with respect to the remaining variables. When the variables belong to simple sets (e.g., a hypercube, the Euclidean hypersphere, or a ball), we derive a sum-of-squares formulation based on a primal-dual approach. In the simplest setting, we provide a convergence proof when the degree of the relaxation tends to infinity and observe empirically that it can be finitely convergent in several situations. Moreover, our formulation leads to an interesting link with feasibility certificates for polynomial inequalities based on Putinar’s Positivstellensatz.
AbstractList We consider min–max optimization problems for polynomial functions, where a multivariate polynomial is maximized with respect to a subset of variables, and the resulting maximal value is minimized with respect to the remaining variables. When the variables belong to simple sets (e.g., a hypercube, the Euclidean hypersphere, or a ball), we derive a sum-of-squares formulation based on a primal-dual approach. In the simplest setting, we provide a convergence proof when the degree of the relaxation tends to infinity and observe empirically that it can be finitely convergent in several situations. Moreover, our formulation leads to an interesting link with feasibility certificates for polynomial inequalities based on Putinar’s Positivstellensatz.
Author Bach, Francis
Author_xml – sequence: 1
  givenname: Francis
  surname: Bach
  fullname: Bach, Francis
  email: francis.bach@inria.fr
  organization: Inria, Ecole Normale Supérieure, PSL Research University
BookMark eNp9kE1OwzAQRi1UJNrCBVj5AoaxY8fJElX8SUUsgLXlxGOUKomD3aJ2xx24ISdpSlmzGI00mvfp05uRSR96JOSSwxUH0NeJAwfNQMhxQAumTsiUyyxnMpf5hEwBhGIq53BGZimtAIBnRTElTy-bjgXP0sfGRkw0Ymu3dt2EPlEfIh1Cu-tD19iWdk3_8_Xd2S0dYqha7BINnxhparqhRZpwnc7Jqbdtwou_PSdvd7eviwe2fL5_XNwsWS2kWDOv6tzKWiBWKBwo7tDVhcaicgXXNVjvylzpKh8vXlW-KitXltIhl1phqbI5EcfcOoaUInozxKazcWc4mIMQcxRiRiHmV4g5QNkRSuNz_47RrMIm9mPP_6g9TWZo5Q
Cites_doi 10.1109/ACC.2001.945730
10.2140/pjm.1958.8.171
10.1109/CDC.2004.1428957
10.1007/10997703_15
10.1007/s11590-022-01922-5
10.1137/S1052623494267127
10.1137/100814147
10.1017/CBO9780511804441
10.1007/s10107-020-01537-7
10.1007/s10107-005-0684-2
10.1142/q0252
10.1007/s10208-021-09526-8
10.1007/s10898-010-9628-3
10.1515/9781400831050
10.1137/0915077
10.1137/S1052623400366802
10.1512/iumj.1993.42.42045
10.1007/s10107-003-0387-5
10.1007/978-3-030-42760-3
10.1137/22M1540818
10.1007/BF00968419
10.1142/9134
10.1007/978-3-319-64546-9
10.1007/s10107-010-0353-y
10.1137/0806020
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature and Mathematical Optimization Society 2024 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s10107-024-02072-5
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1436-4646
EndPage 501
ExternalDocumentID 10_1007_s10107_024_02072_5
GrantInformation_xml – fundername: European Research Council
  grantid: 724063
  funderid: http://dx.doi.org/10.13039/501100000781
GroupedDBID --K
--Z
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACUHS
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADXHL
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHQJS
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAYXX
AFFHD
CITATION
ID FETCH-LOGICAL-c242t-f5c6a4c2eebe2d051dedc87e8bd817c0afd9657b6e8bf5bfb9bd994de1475e953
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001184114800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0025-5610
IngestDate Sat Nov 29 03:34:04 EST 2025
Mon Jul 21 06:07:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 11E25
Semidefinite programming
Sum-of-squares
Polynomial optimization
90C22
Min–max problems
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-f5c6a4c2eebe2d051dedc87e8bd817c0afd9657b6e8bf5bfb9bd994de1475e953
PageCount 27
ParticipantIDs crossref_primary_10_1007_s10107_024_02072_5
springer_journals_10_1007_s10107_024_02072_5
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References 2072_CR15
J-B Lasserre (2072_CR9) 2010
M Putinar (2072_CR31) 1993; 42
2072_CR16
2072_CR19
D Henrion (2072_CR10) 2020
C Helmberg (2072_CR18) 1996; 6
WJ Morokoff (2072_CR17) 1994; 15
CW Scherer (2072_CR23) 2006; 107
J-B Lasserre (2072_CR4) 2001; 11
2072_CR11
GH Golub (2072_CR25) 1996
2072_CR3
PA Parrilo (2072_CR5) 2003; 96
D Henrion (2072_CR20) 2005; 312
CS Efthimiou (2072_CR12) 2014
R Laraki (2072_CR8) 2012; 131
E De Klerk (2072_CR30) 2011; 21
2072_CR27
C Lemaréchal (2072_CR28) 1997; 7
S Boyd (2072_CR14) 2004
M Sion (2072_CR6) 1958; 8
K Schmüdgen (2072_CR13) 2017
J-B Lasserre (2072_CR1) 2011; 51
2072_CR22
2072_CR24
K Fang (2072_CR21) 2021; 190
A Ben-Tal (2072_CR2) 2009
MI Ganzburg (2072_CR26) 1981; 22
TM Cover (2072_CR29) 1999
J Jahn (2072_CR7) 2020
References_xml – ident: 2072_CR19
  doi: 10.1109/ACC.2001.945730
– volume: 8
  start-page: 171
  issue: 1
  year: 1958
  ident: 2072_CR6
  publication-title: Pac. J. Math.
  doi: 10.2140/pjm.1958.8.171
– ident: 2072_CR15
  doi: 10.1109/CDC.2004.1428957
– volume: 312
  start-page: 293
  year: 2005
  ident: 2072_CR20
  publication-title: Positive Polyn. Control
  doi: 10.1007/10997703_15
– ident: 2072_CR22
  doi: 10.1007/s11590-022-01922-5
– volume: 7
  start-page: 367
  issue: 2
  year: 1997
  ident: 2072_CR28
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623494267127
– volume: 21
  start-page: 824
  issue: 3
  year: 2011
  ident: 2072_CR30
  publication-title: SIAM J. Optim.
  doi: 10.1137/100814147
– volume-title: Convex Optimization
  year: 2004
  ident: 2072_CR14
  doi: 10.1017/CBO9780511804441
– ident: 2072_CR27
– volume: 190
  start-page: 331
  issue: 1
  year: 2021
  ident: 2072_CR21
  publication-title: Math. Program.
  doi: 10.1007/s10107-020-01537-7
– volume: 107
  start-page: 189
  issue: 1–2
  year: 2006
  ident: 2072_CR23
  publication-title: Math. Program.
  doi: 10.1007/s10107-005-0684-2
– volume-title: Moments, Positive Polynomials and Their Applications
  year: 2010
  ident: 2072_CR9
– volume-title: The Moment-SOS Hierarchy: Lectures in Probability, Statistics, Computational Geometry, Control and Nonlinear PDEs
  year: 2020
  ident: 2072_CR10
  doi: 10.1142/q0252
– ident: 2072_CR3
  doi: 10.1007/s10208-021-09526-8
– volume: 51
  start-page: 1
  issue: 1
  year: 2011
  ident: 2072_CR1
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-010-9628-3
– volume-title: Robust Optimization
  year: 2009
  ident: 2072_CR2
  doi: 10.1515/9781400831050
– volume: 15
  start-page: 1251
  issue: 6
  year: 1994
  ident: 2072_CR17
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0915077
– volume: 11
  start-page: 796
  issue: 3
  year: 2001
  ident: 2072_CR4
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623400366802
– volume: 42
  start-page: 969
  issue: 3
  year: 1993
  ident: 2072_CR31
  publication-title: Indiana Univ. Math. J.
  doi: 10.1512/iumj.1993.42.42045
– volume: 96
  start-page: 293
  issue: 2
  year: 2003
  ident: 2072_CR5
  publication-title: Math. Program.
  doi: 10.1007/s10107-003-0387-5
– volume-title: Introduction to the Theory of Nonlinear Optimization
  year: 2020
  ident: 2072_CR7
  doi: 10.1007/978-3-030-42760-3
– ident: 2072_CR11
  doi: 10.1137/22M1540818
– ident: 2072_CR24
– volume: 22
  start-page: 223
  issue: 2
  year: 1981
  ident: 2072_CR26
  publication-title: Sib. Math. J.
  doi: 10.1007/BF00968419
– volume-title: Spherical Harmonics in $$p$$ Dimensions
  year: 2014
  ident: 2072_CR12
  doi: 10.1142/9134
– volume-title: The Moment Problem
  year: 2017
  ident: 2072_CR13
  doi: 10.1007/978-3-319-64546-9
– ident: 2072_CR16
– volume: 131
  start-page: 305
  year: 2012
  ident: 2072_CR8
  publication-title: Math. Program.
  doi: 10.1007/s10107-010-0353-y
– volume-title: Matrix Computations
  year: 1996
  ident: 2072_CR25
– volume-title: Elements of Information Theory
  year: 1999
  ident: 2072_CR29
– volume: 6
  start-page: 342
  issue: 2
  year: 1996
  ident: 2072_CR18
  publication-title: SIAM J. Optim.
  doi: 10.1137/0806020
SSID ssj0001388
Score 2.4316819
Snippet We consider min–max optimization problems for polynomial functions, where a multivariate polynomial is maximized with respect to a subset of variables, and the...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 475
SubjectTerms Calculus of Variations and Optimal Control; Optimization
Combinatorics
Full Length Paper
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Mathematics of Computing
Numerical Analysis
Theoretical
Title Sum-of-squares relaxations for polynomial min–max problems over simple sets
URI https://link.springer.com/article/10.1007/s10107-024-02072-5
Volume 209
WOSCitedRecordID wos001184114800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer Journals
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1Fe8sAGlhI3iZ0RISoGqBCFqlvk-CFVommpU1Q2_gP_kF_COU1KKyEkGDIksqzofL47n-_7DqEzj2qqmQfWD2wdCSJuCFeSEqVMoEIRmLjgLejcslaLd7vxfQkKs1W1e3UlWVjqObCb79JqNIDHY3CEWkYr4O64a9jw0O7M7K_f4Lxq1OqigxIq8_Mci-5o8S60cDHNzf_93BbaKENKfDnVgW20pLMdtD5HNAhvdzN2VruL7trjPhkYYl_GDn2EHZ5lMs3cYYhh8XDw_ObQyjBpv5d9vn_0xQSXnWcsdjWf2PYcqzC2Ord76Kl5_Xh1Q8q2CkSCP86JCWUkAkk1rB9VsCmVVpIzzVPFfSY9YVQchSyN4IsJU5PGqYrjQGk_YKGOw8Y-qmWDTB8gHAkJAaaMqBDgDQMGhycBBtM0Us1deWodnVfSTYZT9ozkmyfZiSwBkSWFyJKwji4q4SblTrK_DD_82_AjtEadShTpk2NUy0djfYJW5Wves6PTQoW-ANA2ws0
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF60CurBt1ife_CmgWS7STZHEUvFtoitpbeQ7AMKNq3dVOrN_-A_9Jc4mya1BRH0kEPCsoTZ2ZnZ2fm-QejCJpJI3wbrB7bOoh5TFhOcWEIoKtyIqiDjLejU_WaTdbvBQw4K00W1e3ElmVnqObCbY9JqhMJj-3CEWkYrFDyWYcx_bHVm9tepMFY0ajXRQQ6V-XmORXe0eBeauZjq1v9-bhtt5iElvp7qwA5aksku2pgjGoS3xoydVe-hRmvctwbK0i9jgz7CBs8ymWbuMMSweDh4fjNoZZi030s-3z_60QTnnWc0NjWfWPcMqzDWMtX76Kl6276pWXlbBYuDP04t5XIvopxIWD8iYFMKKTjzJYsFc3xuR0oEnuvHHnxRbqziIBZBQIV0qO_KwK0coFIySOQhwl7EIcDkHoki8IbUh8NTBAZTVWLJTHlqGV0W0g2HU_aM8Jsn2YgsBJGFmchCt4yuCuGG-U7Svww_-tvwc7RWazfqYf2ueX-M1olRjyyVcoJK6WgsT9Eqf017enSWqdMX_LjFsQ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA46RfTBuzivefBNi12WNumjqENxG4Pp2FtJc4GB6-bSyXzzP_gP_SUmvcwNRBAf-tASQjk5OZfkfN8B4MxFEkniGutnbJ2DfaocKjhyhFBYeAyrIOUt6NRJs0m73aA1g-JPq92LK8kM02BZmuLkcijU5QzwrWKP2BA2j0tMOrUIlrAtpLf5ersztcWVKqVF01YbKeSwmZ_nmHdN8_eiqbupbfz_RzfBeh5qwqtMN7bAgoy3wdoMAaF5a0xZW_UOaLTHfWegHP0ytqgkaHEuk-xED5rYFg4Hz28WxWwm7ffiz_ePPpvAvCONhrYWFOqeZRuGWiZ6FzzVbh-v75y83YLDjZ9OHOVxn2GOpFlXJMxmFVJwSiSNBK0Q7jIlAt8jkW--KC9SURCJIMBCVjDxZOBV90ApHsRyH0CfcRN4ch8xZrwkJiapYsaQqmokqS1bLYPzQtLhMGPVCL_5k63IQiOyMBVZ6JXBRSHoMN9h-pfhB38bfgpWWje1sH7ffDgEq8hqSnrCcgRKyWgsj8Eyf016enSSatYXVvDOlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sum-of-squares+relaxations+for+polynomial+min%E2%80%93max+problems+over+simple+sets&rft.jtitle=Mathematical+programming&rft.au=Bach%2C+Francis&rft.date=2025-01-01&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=209&rft.issue=1-2&rft.spage=475&rft.epage=501&rft_id=info:doi/10.1007%2Fs10107-024-02072-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_024_02072_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon