On stochastic models of chemical reactions
•We consider two stochastic models involving d species with m possible random changes.•We demonstrate that both stochastic systems are equivalent.•We check it in an example of Michaelis-Menten. In this short communication we study stochastic simulation algorithms (SSA) for chemical reactions; more s...
Uloženo v:
| Vydáno v: | Chemical physics Ročník 549; s. 111259 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.09.2021
|
| Témata: | |
| ISSN: | 0301-0104 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •We consider two stochastic models involving d species with m possible random changes.•We demonstrate that both stochastic systems are equivalent.•We check it in an example of Michaelis-Menten.
In this short communication we study stochastic simulation algorithms (SSA) for chemical reactions; more specifically, we consider d species with m possible random changes and two procedures: the Chemical Calgevin Method and the general method from E. Allen. We demonstrate that both stochastic systems are equivalent and we check it in an example of Michaelis–Menten. |
|---|---|
| ISSN: | 0301-0104 |
| DOI: | 10.1016/j.chemphys.2021.111259 |