Lipschitz type inequalities for noncommutative perspectives of operator monotone functions in Hilbert spaces

Assume that f : [ 0 , ∞ ) → R is a continuous function. We can define the perspective P f B , A by setting P f B , A : = A 1 / 2 f A - 1 / 2 B A - 1 / 2 A 1 / 2 , where A ,  B > 0 . We show in this paper among others that P f B , P - P f A , P ≤ P 2 B - A p 2 P f m 2 , p - P f m 1 , p m 2 - m 1 i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Advances in operator theory Ročník 6; číslo 2
Hlavný autor: Dragomir, Silvestru Sever
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cham Springer International Publishing 01.04.2021
Predmet:
ISSN:2662-2009, 2538-225X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Assume that f : [ 0 , ∞ ) → R is a continuous function. We can define the perspective P f B , A by setting P f B , A : = A 1 / 2 f A - 1 / 2 B A - 1 / 2 A 1 / 2 , where A ,  B > 0 . We show in this paper among others that P f B , P - P f A , P ≤ P 2 B - A p 2 P f m 2 , p - P f m 1 , p m 2 - m 1 if m 1 ≠ m 2 , f ′ m p if m 1 = m 2 = m for all A ≥ m 1 > 0 , B ≥ m 2 > 0 and P ≥ p > 0 . If f is operator monotone on [ 0 , ∞ ) , then for all C ≥ n 1 > 0 , D ≥ n 2 > 0 , Q > q > 0 we also have P f Q , D - P f Q , C ≤ Q 2 D - C q 2 P f q , n 2 - P f q , n 1 n 2 - n 1 if n 2 ≠ n 1 , f q n - q n f ′ q n if n 2 = n 1 = n . Some applications for weighted operator geometric mean and relative operator entropy are also given.
AbstractList Assume that f : [ 0 , ∞ ) → R is a continuous function. We can define the perspective P f B , A by setting P f B , A : = A 1 / 2 f A - 1 / 2 B A - 1 / 2 A 1 / 2 , where A ,  B > 0 . We show in this paper among others that P f B , P - P f A , P ≤ P 2 B - A p 2 P f m 2 , p - P f m 1 , p m 2 - m 1 if m 1 ≠ m 2 , f ′ m p if m 1 = m 2 = m for all A ≥ m 1 > 0 , B ≥ m 2 > 0 and P ≥ p > 0 . If f is operator monotone on [ 0 , ∞ ) , then for all C ≥ n 1 > 0 , D ≥ n 2 > 0 , Q > q > 0 we also have P f Q , D - P f Q , C ≤ Q 2 D - C q 2 P f q , n 2 - P f q , n 1 n 2 - n 1 if n 2 ≠ n 1 , f q n - q n f ′ q n if n 2 = n 1 = n . Some applications for weighted operator geometric mean and relative operator entropy are also given.
ArticleNumber 33
Author Dragomir, Silvestru Sever
Author_xml – sequence: 1
  givenname: Silvestru Sever
  orcidid: 0000-0003-2902-6805
  surname: Dragomir
  fullname: Dragomir, Silvestru Sever
  email: sever.dragomir@vu.edu.au
  organization: Mathematics, College of Engineering and Science, Victoria University
BookMark eNp9UEFOwzAQtFCRKKUf4OQPGNbrNImPqAKKVIkLSNwsJ3XAVWIH20Eqr8elnDntaHdmdjSXZOa8M4Rcc7jhANVtLASIkgFyBsAFMHlG5rgSNUNcvc0yLktkCCAvyDLGPQAgCFkizEm_tWNsP2z6pukwGmqd-Zx0b5M1kXY-0Pyr9cMwJZ3sl6GjCXE07RFH6jvq80KnzBu88ynnot3k8tm7mL3oxvaNCYnGUbcmXpHzTvfRLP_mgrw-3L-sN2z7_Pi0vtuyFgtMzJS1rkSJWndCikLDTjSa75AXjQTEcid110rd1EJXVaEbU9TQiGqFKI3mFRcLgiffNvgYg-nUGOygw0FxUMfK1KkylStTv5UpmUXiJIqZ7N5NUHs_BZdz_qf6ATadc5o
Cites_doi 10.7153/jmi-09-04
10.15352/afa/1391614576
10.15352/afa/1396833504
10.1016/0024-3795(95)00201-2
10.1016/0024-3795(94)90449-9
10.1080/03081087.2017.1295432
10.1007/BF01170633
10.1007/s002200050279
10.1007/BF02054965
10.2183/pjab1945.49.205
10.1007/BF01941801
10.1073/pnas.0807965106
10.1002/mana.201200194
10.1007/BF01371042
ContentType Journal Article
Copyright Tusi Mathematical Research Group (TMRG) 2021
Copyright_xml – notice: Tusi Mathematical Research Group (TMRG) 2021
DBID AAYXX
CITATION
DOI 10.1007/s43036-021-00130-9
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2538-225X
ExternalDocumentID 10_1007_s43036_021_00130_9
GroupedDBID 0R~
406
8UJ
AACDK
AAHNG
AAJBT
AAOJF
AASML
AATNV
AAUYE
ABAKF
ABECU
ABJNI
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADYFF
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AIGIU
AILAN
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
BGNMA
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRP
GROUPED_DOAJ
IKXTQ
IWAJR
JZLTJ
KOV
LLZTM
M4Y
M~E
NPVJJ
NQJWS
NU0
PT4
PUASD
RBF
ROL
RPE
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
UOJIU
UTJUX
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
AZQEC
BENPR
CCPQU
CITATION
DWQXO
GNUQQ
GUQSH
HCIFZ
M2O
M2P
PHGZM
PHGZT
RBV
ID FETCH-LOGICAL-c242t-e68a7362aaf3934a0d3ba1d214b90226d9afc9ab83a774abe480b375229ea1713
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000617741300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2662-2009
IngestDate Sat Nov 29 02:10:16 EST 2025
Fri Feb 21 02:49:14 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Operator monotone functions
26D1
Noncommutative perspectives
15A60
47A63
47A30
26D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-e68a7362aaf3934a0d3ba1d214b90226d9afc9ab83a774abe480b375229ea1713
ORCID 0000-0003-2902-6805
ParticipantIDs crossref_primary_10_1007_s43036_021_00130_9
springer_journals_10_1007_s43036_021_00130_9
PublicationCentury 2000
PublicationDate 20210400
PublicationDateYYYYMMDD 2021-04-01
PublicationDate_xml – month: 4
  year: 2021
  text: 20210400
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Advances in operator theory
PublicationTitleAbbrev Adv. Oper. Theory
PublicationYear 2021
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References Nikoufar, Shamohammadi (CR24) 2018; 66
Bhatia (CR4) 1997
Fujii, Seo (CR15) 1998; 1
Furuta (CR16) 2015; 9
Morishita, Sano, Tachibana (CR22) 2014; 5
Effros, Hansen (CR9) 2014; 5
Kato (CR18) 1973; 49
CR19
CR7
Coleman (CR6) 2010
Effros (CR8) 2009; 106
Heinz (CR17) 1951; 123
Fujii, Kamei (CR14) 1989; 34
Araki, Yamagami (CR1) 1981; 81
Moslehian, Kian (CR21) 2013; 286
Löwner (CR20) 1934; 38
Farforovskaya, Nikolskaya (CR12) 2008; 20
Nakamura, Umegaki (CR23) 1961; 37
Fujii, Kamei (CR13) 1989; 34
Farforovskaya (CR11) 1976; 56
Bhatia (CR3) 1995; 226
Bhatia (CR2) 1994; 208
Farforovskaya (CR10) 1967; 4
Bhatia, Singh, Sinha (CR5) 1998; 191
I Nikoufar (130_CR24) 2018; 66
EG Effros (130_CR9) 2014; 5
M Nakamura (130_CR23) 1961; 37
YuB Farforovskaya (130_CR12) 2008; 20
YuB Farforovskaya (130_CR10) 1967; 4
K Löwner (130_CR20) 1934; 38
R Bhatia (130_CR5) 1998; 191
EG Effros (130_CR8) 2009; 106
130_CR19
J Morishita (130_CR22) 2014; 5
JI Fujii (130_CR15) 1998; 1
T Kato (130_CR18) 1973; 49
MS Moslehian (130_CR21) 2013; 286
H Araki (130_CR1) 1981; 81
JI Fujii (130_CR13) 1989; 34
R Bhatia (130_CR4) 1997
E Heinz (130_CR17) 1951; 123
JI Fujii (130_CR14) 1989; 34
R Coleman (130_CR6) 2010
YuB Farforovskaya (130_CR11) 1976; 56
T Furuta (130_CR16) 2015; 9
R Bhatia (130_CR2) 1994; 208
130_CR7
R Bhatia (130_CR3) 1995; 226
References_xml – volume: 9
  start-page: 47
  issue: 1
  year: 2015
  end-page: 52
  ident: CR16
  article-title: Precise lower bound of for and non-constant operator monotone function on
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-09-04
– volume: 4
  start-page: 155
  year: 1967
  end-page: 156
  ident: CR10
  article-title: Estimates of the closeness of spectral decompositions of self-adjoint operators in the Kantorovich–Rubinshtein metric (in Russian)
  publication-title: Vesln. Leningrad. Gos. Univ. Ser. Mat. Mekh. Astronom.
– volume: 34
  start-page: 541
  issue: 4
  year: 1989
  end-page: 547
  ident: CR13
  article-title: Uhlmann’s interpolational method for operator means
  publication-title: Math. Jpn.
– ident: CR19
– volume: 5
  start-page: 121
  issue: 1
  year: 2014
  end-page: 127
  ident: CR22
  article-title: Kwong matrices and operator monotone functions on
  publication-title: Ann. Funct. Anal.
  doi: 10.15352/afa/1391614576
– volume: 37
  start-page: 149
  year: 1961
  end-page: 154
  ident: CR23
  article-title: A note on the entropy for operator algebras
  publication-title: Proc. Jpn. Acad.
– volume: 1
  start-page: 301
  year: 1998
  end-page: 306
  ident: CR15
  article-title: On parametrized operator means dominated by power ones
  publication-title: Sci. Math.
– volume: 5
  start-page: 74
  issue: 2
  year: 2014
  end-page: 79
  ident: CR9
  article-title: Noncommutative perspectives
  publication-title: Ann. Funct. Anal.
  doi: 10.15352/afa/1396833504
– volume: 226
  start-page: 639
  issue: 228
  year: 1995
  end-page: 645
  ident: CR3
  article-title: Perturbation bounds for the operator absolute value
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(95)00201-2
– volume: 208
  start-page: 367
  issue: 209
  year: 1994
  end-page: 376
  ident: CR2
  article-title: First and second order perturbation bounds for the operator absolute value
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(94)90449-9
– volume: 20
  start-page: 224
  issue: 3
  year: 2008
  end-page: 242
  ident: CR12
  article-title: Modulus of continuity of operator functions
  publication-title: Algebra i Analiz
– volume: 66
  start-page: 243
  issue: 2
  year: 2018
  end-page: 249
  ident: CR24
  article-title: The converse of the Loewner–Heinz inequality via perspective
  publication-title: Linear Multilinear Algebras
  doi: 10.1080/03081087.2017.1295432
– start-page: xii+347
  year: 1997
  ident: CR4
  article-title: Matrix analysis
  publication-title: Graduate Texts in Mathematics
– volume: 34
  start-page: 341
  issue: 3
  year: 1989
  end-page: 348
  ident: CR14
  article-title: Relative operator entropy in noncommutative information theory
  publication-title: Math. Jpn.
– ident: CR7
– volume: 56
  start-page: 143
  year: 1976
  end-page: 162
  ident: CR11
  article-title: An estimate of the norm for self-adjoint operators and (in Russian)
  publication-title: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.
– volume: 38
  start-page: 177
  year: 1934
  end-page: 216
  ident: CR20
  article-title: Über monotone MatrixFunktionen
  publication-title: Math. Z
  doi: 10.1007/BF01170633
– volume: 286
  start-page: 1514
  issue: 14–15
  year: 2013
  end-page: 1529
  ident: CR21
  article-title: Non-commutative -divergence functional
  publication-title: Math. Nachr.
– volume: 191
  start-page: 603
  issue: 3
  year: 1998
  end-page: 611
  ident: CR5
  article-title: Differentiation of operator functions and perturbation bounds
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050279
– volume: 123
  start-page: 415
  year: 1951
  end-page: 438
  ident: CR17
  article-title: Beiträge zur Störungsteorie der Spektralzerlegung
  publication-title: Math. Ann.
  doi: 10.1007/BF02054965
– year: 2010
  ident: CR6
  publication-title: Calculus on Normed Vector Spaces
– volume: 49
  start-page: 143
  year: 1973
  end-page: 162
  ident: CR18
  article-title: Continuity of the map for linear operators
  publication-title: Proc. Jpn. Acad.
  doi: 10.2183/pjab1945.49.205
– volume: 81
  start-page: 89
  year: 1981
  end-page: 96
  ident: CR1
  article-title: An inequality for Hilbert–Schmidt norm
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01941801
– volume: 106
  start-page: 1006
  year: 2009
  end-page: 1008
  ident: CR8
  article-title: A matrix convexity approach to some celebrated quantum inequalities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807965106
– volume: 4
  start-page: 155
  year: 1967
  ident: 130_CR10
  publication-title: Vesln. Leningrad. Gos. Univ. Ser. Mat. Mekh. Astronom.
– volume: 38
  start-page: 177
  year: 1934
  ident: 130_CR20
  publication-title: Math. Z
  doi: 10.1007/BF01170633
– volume: 191
  start-page: 603
  issue: 3
  year: 1998
  ident: 130_CR5
  publication-title: Commun. Math. Phys.
  doi: 10.1007/s002200050279
– volume: 81
  start-page: 89
  year: 1981
  ident: 130_CR1
  publication-title: Commun. Math. Phys.
  doi: 10.1007/BF01941801
– volume: 66
  start-page: 243
  issue: 2
  year: 2018
  ident: 130_CR24
  publication-title: Linear Multilinear Algebras
  doi: 10.1080/03081087.2017.1295432
– volume: 208
  start-page: 367
  issue: 209
  year: 1994
  ident: 130_CR2
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(94)90449-9
– volume: 286
  start-page: 1514
  issue: 14–15
  year: 2013
  ident: 130_CR21
  publication-title: Math. Nachr.
  doi: 10.1002/mana.201200194
– volume: 123
  start-page: 415
  year: 1951
  ident: 130_CR17
  publication-title: Math. Ann.
  doi: 10.1007/BF02054965
– ident: 130_CR7
– volume: 20
  start-page: 224
  issue: 3
  year: 2008
  ident: 130_CR12
  publication-title: Algebra i Analiz
– volume: 56
  start-page: 143
  year: 1976
  ident: 130_CR11
  publication-title: Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst.
– volume: 9
  start-page: 47
  issue: 1
  year: 2015
  ident: 130_CR16
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-09-04
– volume: 5
  start-page: 121
  issue: 1
  year: 2014
  ident: 130_CR22
  publication-title: Ann. Funct. Anal.
  doi: 10.15352/afa/1391614576
– volume: 5
  start-page: 74
  issue: 2
  year: 2014
  ident: 130_CR9
  publication-title: Ann. Funct. Anal.
  doi: 10.15352/afa/1396833504
– volume: 49
  start-page: 143
  year: 1973
  ident: 130_CR18
  publication-title: Proc. Jpn. Acad.
  doi: 10.2183/pjab1945.49.205
– volume: 34
  start-page: 541
  issue: 4
  year: 1989
  ident: 130_CR13
  publication-title: Math. Jpn.
– volume: 1
  start-page: 301
  year: 1998
  ident: 130_CR15
  publication-title: Sci. Math.
– volume: 34
  start-page: 341
  issue: 3
  year: 1989
  ident: 130_CR14
  publication-title: Math. Jpn.
– volume-title: Calculus on Normed Vector Spaces
  year: 2010
  ident: 130_CR6
– volume: 226
  start-page: 639
  issue: 228
  year: 1995
  ident: 130_CR3
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(95)00201-2
– start-page: xii+347
  volume-title: Graduate Texts in Mathematics
  year: 1997
  ident: 130_CR4
– ident: 130_CR19
  doi: 10.1007/BF01371042
– volume: 37
  start-page: 149
  year: 1961
  ident: 130_CR23
  publication-title: Proc. Jpn. Acad.
– volume: 106
  start-page: 1006
  year: 2009
  ident: 130_CR8
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0807965106
SSID ssj0002039620
Score 2.1386821
Snippet Assume that f : [ 0 , ∞ ) → R is a continuous function. We can define the perspective P f B , A by setting P f B , A : = A 1 / 2 f A - 1 / 2 B A - 1 / 2 A 1 /...
SourceID crossref
springer
SourceType Index Database
Publisher
SubjectTerms Mathematics
Mathematics and Statistics
Operator Theory
Original Paper
Title Lipschitz type inequalities for noncommutative perspectives of operator monotone functions in Hilbert spaces
URI https://link.springer.com/article/10.1007/s43036-021-00130-9
Volume 6
WOSCitedRecordID wos000617741300003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer
  customDbUrl:
  eissn: 2538-225X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002039620
  issn: 2662-2009
  databaseCode: RSV
  dateStart: 20200201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB509aAH3-KbHLxpoG3SNjmKuOxBF8EHeytpkoUF2ZZt9eCvd5I-ZEEEvQ9DmE7nm8nMfAG4FIk1QltN04hpynluqYxTSxOLaGMQokSs_WMT6XgsJhP52C6FVd20e9eS9JG6X3bjLtpSN1Lg221UrsJa7NhmXI3-9NrfrEQBk4nnY0TwiZwbyHZb5mc1y4i03A71KDPc_t_5dmCrzSrJTeMGu7Bi53uw-dBTslb78HY_KyvXNPgk7tqVYHbZLFRiqUwwcyXzYq7dtkjtqcBJ-b2FWZFiSorS-o48Qb8tHIM3cZDovRZ1kdHMkWXVBAMURp4DeBnePd-OaPvUAtWI0TW1iVApYplSUyYZV4FhuQpNFPJcIsonRqqplioXTGG-qHLLRZCzFJM3aVWIhe4hDPCY9ghIbgPBtQixbkx4jOoMU8op1CoQJpbHcNWZOysbRo2s5072NszQhpm3YYbS1521s_bvqn4RP_mb-ClsRP6DuUmcMxjUi3d7Duv6o55ViwvvVl-4z8jv
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90CuqD3-K3efBNA12TtsmjiGPiNgSn7K2kaQaDsZa1-uBf7yVrKwMR9D0c4Xq9313u7ncA1yI0qdBG08hnmnKeGCqDyNDQINqkCFEi0G7ZRDQYiNFIPldDYUXd7V6XJJ2nbobduPW21LYUuHIblauwxu2aHZujv7w1Lyu-x2To-BgRfHxrBrKalvlZzDIiLZdDHcp0dv53v13YrqJKcrcwgz1YMbN92Oo3lKzFAUx7k7ywRYNPYp9dCUaXi4FKTJUJRq5kls20nRYpHRU4yb-nMAuSjUmWG1eRJ2i3mWXwJhYSndWiLNKdWLKskqCDQs9zCK-dh-F9l1arFqhGjC6pCYWKEMuUGjPJuPJSlqh2itpNJKJ8mEo11lIlgimMF1ViuPASFmHwJo1qY6J7BC28pjkGkhhPcC3amDeGPEBxKVPKCtTKE2kgT-CmVnecLxg14oY72ekwRh3GTocxnr6ttR1Xf1fxy_HTvx2_go3usN-Le4-DpzPY9N3Hs10559Aq5-_mAtb1Rzkp5pfOxL4ALozL0w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA66iujBt_g2B28a7CNtk6Ooy4rrsvhibyVNUliQtmyrB3-9k7RbXRBBvIchTKf5ZjLzfUHolIVaMakliTxfEkoTTXgQaRJqQBsFEMUCaR-biAYDNhrx4TcWv512n7Yka06DUWnKqotCpRct8Y2ak5eY8QLbeiN8Hi1QqGTMUNfD40t7y-I5Pg-tNiMAkWdCgjfMmZ_NzKLTbGvUIk537f97XUerTbaJL-vw2EBzOttEK_etVGu5hV7746I0zYQPbK5jMWSdNdESSmgMGS3O8kwaFkllJcJx8cXOLHGe4rzQtlOPIZ5zo-yNDVTaaAZbuDc2IloVhoMLTqRt9Ny9ebrqkeYJBiIBuyuiQyYiwDghUp_7VDjKT4SrPJcmHNA_VFykkouE-QLySJFoypzEjyCp41q4UADvoA5sU-8inGiHUclcqCdDGoA55QthDErhMBXwPXQ2dX1c1EobcaupbH0Ygw9j68MYVp9PPR83f135y_L9vy0_QUvD627cvx3cHaBlz347M6xziDrV5E0foUX5Xo3LybGNtk844NS3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Lipschitz+type+inequalities+for+noncommutative+perspectives+of+operator+monotone+functions+in+Hilbert+spaces&rft.jtitle=Advances+in+operator+theory&rft.au=Dragomir%2C+Silvestru+Sever&rft.date=2021-04-01&rft.pub=Springer+International+Publishing&rft.issn=2662-2009&rft.eissn=2538-225X&rft.volume=6&rft.issue=2&rft_id=info:doi/10.1007%2Fs43036-021-00130-9&rft.externalDocID=10_1007_s43036_021_00130_9
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2662-2009&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2662-2009&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2662-2009&client=summon