Risk-Averse Influence Maximization A computational investigation by genetic algorithm framework

The top k-influencers problem, as a social influence maximization (SIM) problem, seeks out the best k actors, called the seed set, in a network with the greatest expected Influence Spread (IS). This problem is formulated as a mean-maximization of the IS with no consideration for the variance of the...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of supercomputing Vol. 79; no. 3; pp. 2519 - 2569
Main Authors: NasehiMoghaddam, Saeed, Fathian, Mohammad, Amiri, Babak
Format: Journal Article
Language:English
Published: New York Springer US 01.02.2023
Subjects:
ISSN:0920-8542, 1573-0484
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The top k-influencers problem, as a social influence maximization (SIM) problem, seeks out the best k actors, called the seed set, in a network with the greatest expected Influence Spread (IS). This problem is formulated as a mean-maximization of the IS with no consideration for the variance of the IS. Consequently, it is a risk-blind influence maximization (RBIM) problem. The variance minimization problem has a considerable tendency toward trivial solutions in the absence of a known exogenous threshold of the IS, which makes the formulation ineffective. As an alternative strategy to overcome the trivial solution challenge, risk-averse influence maximization (RAIM) is being investigated and compared empirically with RBIM based on theoretical findings from the literature. RAIM searches for the best k actors under a known diffusion process, whose conditional value-at-risk (CVaR) measure of the IS is maximized. RAIM lacks an approximation algorithm due to the absence of a proven submodularity feature for CVaR. Moreover, no metaheuristic framework was tuned under all of the IC, WC, LT, and TR diffusion models, despite numerous algorithmic contributions to RBIM. Thus, a Genetic Algorithm Framework for Influence Maximization (GAFIM) is proposed by drawing inspiration from the genetic algorithms proposed for RBIM but under all of the IC, WC, LT, and TR diffusion models. A novel approach to tuning GAFIM has been developed employing a community detection algorithm and applied to RAIM and RBIM. Based on the tuning results, the seed set size has a remarkable effect on GAFIM’s performance and highlights its superiority over the algorithms it was inspired by. Furthermore, a comparison to the closest genetic algorithm published in the literature demonstrates that GAFIM outperforms it by a factor of at least 20 in terms of efficiency while achieving a higher quality result. Having completed the quality investigation of GAFIM with satisfactory results, the comparison experiments support intriguing distinctions between RAIM and RBIM in the dominance factor, dominance rate, and dominance mutuality. The variance of the IS and the propagation time/median of the IS prepare the dominance factor(s) for RAIM/RBIM. According to the results, the significant dominance rates (48% vs. 65%), the unreciprocated dominance pattern in dominating the other problem in its dominance area (66% vs. 91%), the complete dominance pattern in dominating without being dominated (9% vs. 34%), and being nondominated (35% vs. 52%) are not as probable for RBIM as for RAIM.
AbstractList The top k-influencers problem, as a social influence maximization (SIM) problem, seeks out the best k actors, called the seed set, in a network with the greatest expected Influence Spread (IS). This problem is formulated as a mean-maximization of the IS with no consideration for the variance of the IS. Consequently, it is a risk-blind influence maximization (RBIM) problem. The variance minimization problem has a considerable tendency toward trivial solutions in the absence of a known exogenous threshold of the IS, which makes the formulation ineffective. As an alternative strategy to overcome the trivial solution challenge, risk-averse influence maximization (RAIM) is being investigated and compared empirically with RBIM based on theoretical findings from the literature. RAIM searches for the best k actors under a known diffusion process, whose conditional value-at-risk (CVaR) measure of the IS is maximized. RAIM lacks an approximation algorithm due to the absence of a proven submodularity feature for CVaR. Moreover, no metaheuristic framework was tuned under all of the IC, WC, LT, and TR diffusion models, despite numerous algorithmic contributions to RBIM. Thus, a Genetic Algorithm Framework for Influence Maximization (GAFIM) is proposed by drawing inspiration from the genetic algorithms proposed for RBIM but under all of the IC, WC, LT, and TR diffusion models. A novel approach to tuning GAFIM has been developed employing a community detection algorithm and applied to RAIM and RBIM. Based on the tuning results, the seed set size has a remarkable effect on GAFIM’s performance and highlights its superiority over the algorithms it was inspired by. Furthermore, a comparison to the closest genetic algorithm published in the literature demonstrates that GAFIM outperforms it by a factor of at least 20 in terms of efficiency while achieving a higher quality result. Having completed the quality investigation of GAFIM with satisfactory results, the comparison experiments support intriguing distinctions between RAIM and RBIM in the dominance factor, dominance rate, and dominance mutuality. The variance of the IS and the propagation time/median of the IS prepare the dominance factor(s) for RAIM/RBIM. According to the results, the significant dominance rates (48% vs. 65%), the unreciprocated dominance pattern in dominating the other problem in its dominance area (66% vs. 91%), the complete dominance pattern in dominating without being dominated (9% vs. 34%), and being nondominated (35% vs. 52%) are not as probable for RBIM as for RAIM.
Author Fathian, Mohammad
Amiri, Babak
NasehiMoghaddam, Saeed
Author_xml – sequence: 1
  givenname: Saeed
  surname: NasehiMoghaddam
  fullname: NasehiMoghaddam, Saeed
  organization: School of Industrial Engineering, Iran University of Science and Technology
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0002-6909-6974
  surname: Fathian
  fullname: Fathian, Mohammad
  email: fathian@iust.ac.ir
  organization: School of Industrial Engineering, Iran University of Science and Technology
– sequence: 3
  givenname: Babak
  surname: Amiri
  fullname: Amiri, Babak
  organization: School of Industrial Engineering, Iran University of Science and Technology
BookMark eNp9j0FLAzEQhYNUcFv9A56K9-hkJmuyx1LUFiqC6Dkku4lsbbOStFb99a6uZ0_Dg_ke7xuzUeyiZ-xcwKUAUFdZCETFAZGDVCT44YgVolTURy1HrIAKgetS4gkb57wGAEmKCnbx2OZXPnv3KfvpMobN3sfaT-_tR7ttv-yu7eIpOw52k_3Z352w59ubp_mCrx7ulvPZitcoccebhsiDoDKA1VDK64YQsHGaHNkAKiBqixqrutbOQxVk7byUwpVBOOkUTRgOvXXqck4-mLfUbm36NALMj6UZLE1vaX4tzaGHaIBy_xxffDLrbp9iv_M_6hsSU1aH
Cites_doi 10.1145/3035918.3035924
10.1109/NAFIPS.1996.534789
10.1007/s11227-020-03355-2
10.1145/2723372.2723734
10.1145/2882903.2882929
10.1145/2588555.2593670
10.1145/1835804.1835934
10.1007/11871637_27
10.1145/956750.956769
10.1145/2661829.2662077
10.1109/ICDM.2011.132
10.1145/324133.324140
10.1016/j.tcs.2010.08.021
10.21314/JOR.2000.038
10.1109/TASE.2010.2052042
10.1109/TKDE.2015.2419659
10.1145/1963192.1963217
10.1609/aaai.v25i1.7838
10.1103/PhysRevE.69.026113
10.1111/j.2517-6161.1995.tb02031.x
10.1007/978-1-4757-6594-6_17
10.1016/j.orl.2015.08.001
10.1109/ASONAM.2016.7752390
10.1016/j.knosys.2018.06.013
10.1007/978-3-319-62389-4_52
10.1109/ICDM.2012.79
10.14778/3099622.3099623
10.1145/2882903.2915207
10.1103/PhysRevE.70.066111
10.1609/aaai.v28i1.8726
10.1198/1061860043515
10.1109/SMC.2015.446
10.1016/j.ins.2016.07.012
10.1080/00401706.1981.10487680
10.1145/2600428.2609592
10.1109/ICDM.2010.118
10.1109/TKDE.2018.2807843
10.1145/2939672.2939745
10.1137/1.9781611973402.70
10.1109/TKDE.2016.2624734
10.1145/2505515.2505541
10.1016/j.physa.2017.02.067
10.1109/CEC.2018.8477835
10.1145/1281192.1281239
10.1016/j.tcs.2014.02.027
10.1007/978-3-031-01850-3
10.1007/978-3-319-31204-0_25
10.1145/2661829.2662009
10.1609/aaai.v29i1.9277
10.1145/3038912.3052628
10.1145/1557019.1557047
10.1145/1835804.1835935
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s11227-022-04731-w
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0484
EndPage 2569
ExternalDocumentID 10_1007_s11227_022_04731_w
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
123
199
1N0
1SB
2.D
203
28-
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDPE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADMLS
ADQRH
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BBWZM
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EAS
EBD
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PT4
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZMTXR
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
K7-
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c242t-dd33e0135f0a80546d3202db83b3af07f228a2829cc8be09f4cbe441b5f1b4b73
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840587300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-8542
IngestDate Sat Nov 29 04:27:43 EST 2025
Fri Feb 21 02:45:16 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Conditional Value at Risk (CVaR)
Genetic Algorithm Framework for Influence Maximization (GAFIM)
Risk-Blind Influence Maximization (RBIM)
Risk-Averse Influence Maximization (RAIM)
Influence spread (IS) values variation
Tuning by community detection
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-dd33e0135f0a80546d3202db83b3af07f228a2829cc8be09f4cbe441b5f1b4b73
ORCID 0000-0002-6909-6974
PageCount 51
ParticipantIDs crossref_primary_10_1007_s11227_022_04731_w
springer_journals_10_1007_s11227_022_04731_w
PublicationCentury 2000
PublicationDate 20230200
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 2
  year: 2023
  text: 20230200
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationSubtitle An International Journal of High-Performance Computer Design, Analysis, and Use
PublicationTitle The Journal of supercomputing
PublicationTitleAbbrev J Supercomput
PublicationYear 2023
Publisher Springer US
Publisher_xml – name: Springer US
References Lu W, Xiao X, Goyal A, Huang K, Lakshmanan LV (2017) Refutations on “ debunking the myths of influence maximization: an in-depth benchmarking study”. arXiv preprint. arXiv:1705.05144
Tsai C-W, Yang Y-C, Chiang M-C (2015) A genetic newgreedy algorithm for influence maximization in social network. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 2549–2554
Arora A, Galhotra S, Ranu S (2017) Debunking the myths of influence maximization: an in-depth benchmarking study. In: Proceedings of the ACM International Conference on Management of Data, pp 651–666
RockafellarRTUryasevSOptimization of conditional value-at-riskJ Risk20002214210.21314/JOR.2000.038
Cheng S, Shen H, Huang J, Chen W, Cheng X (2014) Imrank: influence maximization via finding self-consistent ranking. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 475–484
Chen W, Yuan Y, Zhang L (2010) Scalable influence maximization in social networks under the linear threshold model. In: IEEE 10th International Conference on Data Mining (ICDM), pp 88–97
Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp 47–48
WangXZhangYZhangWLinXChenCBring order into the samples: a novel scalable method for influence maximizationIEEE Trans Knowl Data Eng201729224325610.1109/TKDE.2016.2624734
Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 137–146
Nguyen HT, Thai MT, Dinh TN (2016) Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the International Conference on Management of Data, pp 695–710
NarayanamRNarahariYA shapley value-based approach to discover influential nodes in social networksIEEE Trans Autom Sci Eng20118113014710.1109/TASE.2010.2052042
HollanderMWolfeDAChickenENonparametric statistical methods2013HobokenWiley1279.62006
NewmanMEJGirvanMFinding and evaluating community structure in networksPhys Rev E200469202611310.1103/PhysRevE.69.026113
ZhouCZhangPZangWGuoLOn the upper bounds of spread for greedy algorithms in social network influence maximizationIEEE Trans Knowl Data Eng201527102770278310.1109/TKDE.2015.2419659
MaeharaTRisk averse submodular utility maximizationOper Res Lett2015435526529339419210.1016/j.orl.2015.08.0011408.90213
Chen W, Lin T, Tan Z, Zhao M, Zhou X (2016) Robust influence maximization. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 795–804
MarkowitzHPortfolio selectionJ Financ1952717791
Krömer P, Nowaková J (2017) Guided genetic algorithm for the influence maximization problem. In: International Computing and Combinatorics Conference, pp 630–641
Wang Y, Cong G, Song G, Xie K (2010) Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1039–1048
GongMYanJShenBMaLCaiQInfluence maximization in social networks based on discrete particle swarm optimizationInf Sci201636760061410.1016/j.ins.2016.07.012
AckermanEBen-ZwiOWolfovitzGCombinatorial model and bounds for target set selectionTheor Comput Sci201041144–4640174022276877110.1016/j.tcs.2010.08.0211235.90168
Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp 259–271
Ohsaka N, Yoshida Y (2017) Portfolio optimization for influence spread. In: Proceedings of the 26th International Conference on World Wide Web, pp 977–985
Jung K, Heo W, Chen W (2012) Irie: scalable and robust influence maximization in social networks. In: IEEE 12th International Conference on Data Mining (ICDM), pp 918–923
LiYFanJWangYTanK-LInfluence maximization on social graphs: a surveyIEEE Trans Knowl Data Eng2018301852187210.1109/TKDE.2018.2807843
Galhotra S, Arora A, Roy S (2016) Holistic influence maximization: Combining scalability and efficiency with opinion-aware models. In: Proceedings of the International Conference on Management of Data, pp 743–758
Kim J, Kim S-K, Yu H (2013) Scalable and parallelizable processing of influence maximization for large-scale social networks? In: IEEE 29th International Conference on Data Engineering (ICDE), pp 266–277
Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007) Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 420–429
Cohen E, Delling D, Pajor T, Werneck RF (2014) Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp 629–638
Charikar M, Naamad Y, Wirth A (2016) On approximating target set selection. In: LIPIcs-Leibniz International Proceedings in Informatics, vol 60
Liu Q, Xiang B, Chen E, Xiong H, Tang F, Yu JX (2014) Influence maximization over large-scale social networks: a bounded linear approach. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp 171–180
Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp 1539–1554
HeXKempeDStability and robustness in influence maximizationACM Trans Knowl Discov Data (TKDD)201812666
BenjaminiYHochbergYControlling the false discovery rate: a practical and powerful approach to multiple testingJ R Stat Soc Ser B (Methodol)199557128930013253920809.62014
Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 199–208
Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American Fuzzy Information Processing. IEEE, pp 519–523
Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K-I (2014) Fast and accurate influence maximization on large networks with pruned Monte-Carlo simulations. In: AAAI, pp 138–144
Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web
ConoverWJJohnsonMEJohnsonMMA comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding dataTechnometrics198123435136110.1080/00401706.1981.10487680
Bucur D, Iacca G (2016) Influence maximization in social networks with genetic algorithms. In: European Conference on the Applications of Evolutionary Computation, pp 379–392
ZhangKDuHFeldmanMWMaximizing influence in a social network: improved results using a genetic algorithmPhys A Stat Mech Appl2017478203010.1016/j.physa.2017.02.0671400.90294
Krömer P, Nowaková J (2018) Guided genetic algorithm for information diffusion problems. In: IEEE Congress on Evolutionary Computation (CEC), pp 1–8
Cheng S, Shen H, Huang J, Zhang G, Cheng X (2013) Staticgreedy: solving the scalability-accuracy dilemma in influence maximization. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp 509–518
Banerjee S, Jenamani M, Pratihar DK (2018) A survey on influence maximization in a social network. arXiv preprint. arXiv:1808.05502
KleinbergJMAuthoritative sources in a hyperlinked environmentJ ACM (JACM)1999465604632174764910.1145/324133.3241401065.68660
Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp 75–86
Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. In: AAAI. http://networkrepository.com
ChenWLakshmananLVCastilloCInformation and influence propagation in social networksSynth Lect Data Manag201354117710.1007/978-3-031-01850-3
Uryasev S, Rockafellar RT (2001) Conditional value-at-risk: optimization approach. In: Stochastic optimization: algorithms and applications. Springer, pp 411–435
CicaleseFCordascoGGarganoLMilaniÄMVaccaroULatency-bounded target set selection in social networksTheor Comput Sci2014535115319777910.1016/j.tcs.2014.02.0271358.05272
KhomamiMMDRezvanianAMeybodiMRBagheriACfin: a community-based algorithm for finding influential nodes in complex social networksJ Supercomput2021772207223610.1007/s11227-020-03355-2
JiangQSongGCongGWangYSiWXieKSimulated annealing based influence maximization in social networksAAAI20111112713210.1609/aaai.v25i1.7838
Weskida M, Michalski R (2016) Evolutionary algorithm for seed selection in social influence process. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, pp 1189–1196
Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 946–957
ClausetANewmanMEMooreCFinding community structure in very large networksPhys Rev E200470606611110.1103/PhysRevE.70.066111
HuangKWangSBevilacquaGXiaoXLakshmananLVRevisiting the stop-and-stare algorithms for influence maximizationProc VLDB Endow201710991392410.14778/3099622.3099623
Batagelj V, Mrvar A (2006) Pajek datasets, 2009. http://vlado.fmf.uni-lj.si/pub/networks/data
Goyal A, Lu W, Lakshmanan LV (2011) Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: IEEE 11th International Conference on Data Mining (ICDM), pp 211–220
Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Procee
MMD Khomami (4731_CR45) 2021; 77
MEJ Newman (4731_CR58) 2004; 69
K Zhang (4731_CR41) 2017; 478
4731_CR47
4731_CR48
4731_CR49
4731_CR43
RT Rockafellar (4731_CR2) 2000; 2
4731_CR5
4731_CR44
K Huang (4731_CR51) 2017; 10
4731_CR8
E Ackerman (4731_CR10) 2010; 411
4731_CR7
H Markowitz (4731_CR52) 1952; 7
4731_CR9
4731_CR40
M Hollander (4731_CR55) 2013
4731_CR1
C Zhou (4731_CR35) 2015; 27
4731_CR3
4731_CR18
4731_CR19
WJ Conover (4731_CR61) 1981; 23
A Clauset (4731_CR57) 2004; 70
4731_CR16
4731_CR17
J Tang (4731_CR42) 2018; 160
4731_CR54
4731_CR12
4731_CR13
R Narayanam (4731_CR26) 2011; 8
4731_CR53
T Maehara (4731_CR4) 2015; 43
Y Benjamini (4731_CR59) 1995; 57
4731_CR29
X Wang (4731_CR50) 2017; 29
H-P Piepho (4731_CR56) 2004; 13
Q Jiang (4731_CR25) 2011; 11
4731_CR27
X He (4731_CR14) 2018; 12
4731_CR28
4731_CR21
4731_CR22
4731_CR23
4731_CR24
F Cicalese (4731_CR11) 2014; 535
4731_CR20
Y Li (4731_CR46) 2018; 30
W Chen (4731_CR6) 2013; 5
4731_CR60
M Gong (4731_CR38) 2016; 367
4731_CR36
4731_CR37
4731_CR39
4731_CR32
4731_CR33
4731_CR34
4731_CR30
4731_CR31
JM Kleinberg (4731_CR15) 1999; 46
References_xml – reference: Kim J, Kim S-K, Yu H (2013) Scalable and parallelizable processing of influence maximization for large-scale social networks? In: IEEE 29th International Conference on Data Engineering (ICDE), pp 266–277
– reference: Cohen E, Delling D, Pajor T, Werneck RF (2014) Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp 629–638
– reference: Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. In: AAAI. http://networkrepository.com
– reference: Galhotra S, Arora A, Roy S (2016) Holistic influence maximization: Combining scalability and efficiency with opinion-aware models. In: Proceedings of the International Conference on Management of Data, pp 743–758
– reference: Ohsaka N, Yoshida Y (2017) Portfolio optimization for influence spread. In: Proceedings of the 26th International Conference on World Wide Web, pp 977–985
– reference: Tsai C-W, Yang Y-C, Chiang M-C (2015) A genetic newgreedy algorithm for influence maximization in social network. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 2549–2554
– reference: ConoverWJJohnsonMEJohnsonMMA comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding dataTechnometrics198123435136110.1080/00401706.1981.10487680
– reference: Chen W, Lin T, Tan Z, Zhao M, Zhou X (2016) Robust influence maximization. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 795–804
– reference: Jung K, Heo W, Chen W (2012) Irie: scalable and robust influence maximization in social networks. In: IEEE 12th International Conference on Data Mining (ICDM), pp 918–923
– reference: RockafellarRTUryasevSOptimization of conditional value-at-riskJ Risk20002214210.21314/JOR.2000.038
– reference: TangJZhangRYaoYZhaoZWangPLiHYuanJMaximizing the spread of influence via the collective intelligence of discrete bat algorithmKnowl Based Syst20181608810310.1016/j.knosys.2018.06.013
– reference: Chen W, Yuan Y, Zhang L (2010) Scalable influence maximization in social networks under the linear threshold model. In: IEEE 10th International Conference on Data Mining (ICDM), pp 88–97
– reference: Cheng S, Shen H, Huang J, Chen W, Cheng X (2014) Imrank: influence maximization via finding self-consistent ranking. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 475–484
– reference: Cheng S, Shen H, Huang J, Zhang G, Cheng X (2013) Staticgreedy: solving the scalability-accuracy dilemma in influence maximization. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp 509–518
– reference: MaeharaTRisk averse submodular utility maximizationOper Res Lett2015435526529339419210.1016/j.orl.2015.08.0011408.90213
– reference: NarayanamRNarahariYA shapley value-based approach to discover influential nodes in social networksIEEE Trans Autom Sci Eng20118113014710.1109/TASE.2010.2052042
– reference: Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 946–957
– reference: Krömer P, Nowaková J (2017) Guided genetic algorithm for the influence maximization problem. In: International Computing and Combinatorics Conference, pp 630–641
– reference: JiangQSongGCongGWangYSiWXieKSimulated annealing based influence maximization in social networksAAAI20111112713210.1609/aaai.v25i1.7838
– reference: Lu W, Xiao X, Goyal A, Huang K, Lakshmanan LV (2017) Refutations on “ debunking the myths of influence maximization: an in-depth benchmarking study”. arXiv preprint. arXiv:1705.05144
– reference: MarkowitzHPortfolio selectionJ Financ1952717791
– reference: PiephoH-PAn algorithm for a letter-based representation of all-pairwise comparisonsJ Comput Graph Stat2004132456466206399510.1198/1061860043515
– reference: Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp 75–86
– reference: Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 199–208
– reference: Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web
– reference: ZhouCZhangPZangWGuoLOn the upper bounds of spread for greedy algorithms in social network influence maximizationIEEE Trans Knowl Data Eng201527102770278310.1109/TKDE.2015.2419659
– reference: AckermanEBen-ZwiOWolfovitzGCombinatorial model and bounds for target set selectionTheor Comput Sci201041144–4640174022276877110.1016/j.tcs.2010.08.0211235.90168
– reference: Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007) Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 420–429
– reference: HollanderMWolfeDAChickenENonparametric statistical methods2013HobokenWiley1279.62006
– reference: Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp 47–48
– reference: GongMYanJShenBMaLCaiQInfluence maximization in social networks based on discrete particle swarm optimizationInf Sci201636760061410.1016/j.ins.2016.07.012
– reference: Charikar M, Naamad Y, Wirth A (2016) On approximating target set selection. In: LIPIcs-Leibniz International Proceedings in Informatics, vol 60
– reference: ZhangKDuHFeldmanMWMaximizing influence in a social network: improved results using a genetic algorithmPhys A Stat Mech Appl2017478203010.1016/j.physa.2017.02.0671400.90294
– reference: Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp 1539–1554
– reference: Krömer P, Nowaková J (2018) Guided genetic algorithm for information diffusion problems. In: IEEE Congress on Evolutionary Computation (CEC), pp 1–8
– reference: Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 137–146
– reference: Bucur D, Iacca G (2016) Influence maximization in social networks with genetic algorithms. In: European Conference on the Applications of Evolutionary Computation, pp 379–392
– reference: LiYFanJWangYTanK-LInfluence maximization on social graphs: a surveyIEEE Trans Knowl Data Eng2018301852187210.1109/TKDE.2018.2807843
– reference: ClausetANewmanMEMooreCFinding community structure in very large networksPhys Rev E200470606611110.1103/PhysRevE.70.066111
– reference: HeXKempeDStability and robustness in influence maximizationACM Trans Knowl Discov Data (TKDD)201812666
– reference: NewmanMEJGirvanMFinding and evaluating community structure in networksPhys Rev E200469202611310.1103/PhysRevE.69.026113
– reference: Nguyen HT, Thai MT, Dinh TN (2016) Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the International Conference on Management of Data, pp 695–710
– reference: HuangKWangSBevilacquaGXiaoXLakshmananLVRevisiting the stop-and-stare algorithms for influence maximizationProc VLDB Endow201710991392410.14778/3099622.3099623
– reference: Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American Fuzzy Information Processing. IEEE, pp 519–523
– reference: BenjaminiYHochbergYControlling the false discovery rate: a practical and powerful approach to multiple testingJ R Stat Soc Ser B (Methodol)199557128930013253920809.62014
– reference: WangXZhangYZhangWLinXChenCBring order into the samples: a novel scalable method for influence maximizationIEEE Trans Knowl Data Eng201729224325610.1109/TKDE.2016.2624734
– reference: Banerjee S, Jenamani M, Pratihar DK (2018) A survey on influence maximization in a social network. arXiv preprint. arXiv:1808.05502
– reference: Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1029–1038
– reference: Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K-I (2014) Fast and accurate influence maximization on large networks with pruned Monte-Carlo simulations. In: AAAI, pp 138–144
– reference: Batagelj V, Mrvar A (2006) Pajek datasets, 2009. http://vlado.fmf.uni-lj.si/pub/networks/data/
– reference: Liu Q, Xiang B, Chen E, Xiong H, Tang F, Yu JX (2014) Influence maximization over large-scale social networks: a bounded linear approach. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp 171–180
– reference: Goyal A, Lu W, Lakshmanan LV (2011) Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: IEEE 11th International Conference on Data Mining (ICDM), pp 211–220
– reference: Arora A, Galhotra S, Ranu S (2017) Debunking the myths of influence maximization: an in-depth benchmarking study. In: Proceedings of the ACM International Conference on Management of Data, pp 651–666
– reference: Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp 259–271
– reference: CicaleseFCordascoGGarganoLMilaniÄMVaccaroULatency-bounded target set selection in social networksTheor Comput Sci2014535115319777910.1016/j.tcs.2014.02.0271358.05272
– reference: KleinbergJMAuthoritative sources in a hyperlinked environmentJ ACM (JACM)1999465604632174764910.1145/324133.3241401065.68660
– reference: Uryasev S, Rockafellar RT (2001) Conditional value-at-risk: optimization approach. In: Stochastic optimization: algorithms and applications. Springer, pp 411–435
– reference: Weskida M, Michalski R (2016) Evolutionary algorithm for seed selection in social influence process. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, pp 1189–1196
– reference: Wang Y, Cong G, Song G, Xie K (2010) Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1039–1048
– reference: KhomamiMMDRezvanianAMeybodiMRBagheriACfin: a community-based algorithm for finding influential nodes in complex social networksJ Supercomput2021772207223610.1007/s11227-020-03355-2
– reference: ChenWLakshmananLVCastilloCInformation and influence propagation in social networksSynth Lect Data Manag201354117710.1007/978-3-031-01850-3
– ident: 4731_CR16
– ident: 4731_CR47
  doi: 10.1145/3035918.3035924
– ident: 4731_CR53
  doi: 10.1109/NAFIPS.1996.534789
– ident: 4731_CR9
– ident: 4731_CR12
– volume: 77
  start-page: 2207
  year: 2021
  ident: 4731_CR45
  publication-title: J Supercomput
  doi: 10.1007/s11227-020-03355-2
– ident: 4731_CR33
  doi: 10.1145/2723372.2723734
– ident: 4731_CR37
  doi: 10.1145/2882903.2882929
– ident: 4731_CR32
  doi: 10.1145/2588555.2593670
– ident: 4731_CR20
  doi: 10.1145/1835804.1835934
– volume-title: Nonparametric statistical methods
  year: 2013
  ident: 4731_CR55
– volume: 12
  start-page: 66
  issue: 6
  year: 2018
  ident: 4731_CR14
  publication-title: ACM Trans Knowl Discov Data (TKDD)
– ident: 4731_CR17
  doi: 10.1007/11871637_27
– ident: 4731_CR1
  doi: 10.1145/956750.956769
– ident: 4731_CR30
  doi: 10.1145/2661829.2662077
– ident: 4731_CR24
  doi: 10.1109/ICDM.2011.132
– volume: 7
  start-page: 77
  issue: 1
  year: 1952
  ident: 4731_CR52
  publication-title: J Financ
– volume: 46
  start-page: 604
  issue: 5
  year: 1999
  ident: 4731_CR15
  publication-title: J ACM (JACM)
  doi: 10.1145/324133.324140
– volume: 411
  start-page: 4017
  issue: 44–46
  year: 2010
  ident: 4731_CR10
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2010.08.021
– volume: 2
  start-page: 21
  year: 2000
  ident: 4731_CR2
  publication-title: J Risk
  doi: 10.21314/JOR.2000.038
– volume: 8
  start-page: 130
  issue: 1
  year: 2011
  ident: 4731_CR26
  publication-title: IEEE Trans Autom Sci Eng
  doi: 10.1109/TASE.2010.2052042
– volume: 27
  start-page: 2770
  issue: 10
  year: 2015
  ident: 4731_CR35
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2419659
– ident: 4731_CR23
  doi: 10.1145/1963192.1963217
– volume: 11
  start-page: 127
  year: 2011
  ident: 4731_CR25
  publication-title: AAAI
  doi: 10.1609/aaai.v25i1.7838
– volume: 69
  start-page: 026113
  issue: 2
  year: 2004
  ident: 4731_CR58
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.69.026113
– volume: 57
  start-page: 289
  issue: 1
  year: 1995
  ident: 4731_CR59
  publication-title: J R Stat Soc Ser B (Methodol)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– ident: 4731_CR3
  doi: 10.1007/978-1-4757-6594-6_17
– volume: 43
  start-page: 526
  issue: 5
  year: 2015
  ident: 4731_CR4
  publication-title: Oper Res Lett
  doi: 10.1016/j.orl.2015.08.001
– ident: 4731_CR40
  doi: 10.1109/ASONAM.2016.7752390
– volume: 160
  start-page: 88
  year: 2018
  ident: 4731_CR42
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2018.06.013
– ident: 4731_CR43
  doi: 10.1007/978-3-319-62389-4_52
– ident: 4731_CR27
  doi: 10.1109/ICDM.2012.79
– volume: 10
  start-page: 913
  issue: 9
  year: 2017
  ident: 4731_CR51
  publication-title: Proc VLDB Endow
  doi: 10.14778/3099622.3099623
– ident: 4731_CR39
  doi: 10.1145/2882903.2915207
– volume: 70
  start-page: 066111
  issue: 6
  year: 2004
  ident: 4731_CR57
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.70.066111
– ident: 4731_CR8
  doi: 10.1609/aaai.v28i1.8726
– volume: 13
  start-page: 456
  issue: 2
  year: 2004
  ident: 4731_CR56
  publication-title: J Comput Graph Stat
  doi: 10.1198/1061860043515
– ident: 4731_CR34
  doi: 10.1109/SMC.2015.446
– volume: 367
  start-page: 600
  year: 2016
  ident: 4731_CR38
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.07.012
– volume: 23
  start-page: 351
  issue: 4
  year: 1981
  ident: 4731_CR61
  publication-title: Technometrics
  doi: 10.1080/00401706.1981.10487680
– ident: 4731_CR29
  doi: 10.1145/2600428.2609592
– ident: 4731_CR21
  doi: 10.1109/ICDM.2010.118
– ident: 4731_CR28
– volume: 30
  start-page: 1852
  year: 2018
  ident: 4731_CR46
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2018.2807843
– ident: 4731_CR13
  doi: 10.1145/2939672.2939745
– ident: 4731_CR49
  doi: 10.1137/1.9781611973402.70
– volume: 29
  start-page: 243
  issue: 2
  year: 2017
  ident: 4731_CR50
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2016.2624734
– ident: 4731_CR7
  doi: 10.1145/2505515.2505541
– volume: 478
  start-page: 20
  year: 2017
  ident: 4731_CR41
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2017.02.067
– ident: 4731_CR44
  doi: 10.1109/CEC.2018.8477835
– ident: 4731_CR48
– ident: 4731_CR18
  doi: 10.1145/1281192.1281239
– volume: 535
  start-page: 1
  year: 2014
  ident: 4731_CR11
  publication-title: Theor Comput Sci
  doi: 10.1016/j.tcs.2014.02.027
– ident: 4731_CR54
– volume: 5
  start-page: 1
  issue: 4
  year: 2013
  ident: 4731_CR6
  publication-title: Synth Lect Data Manag
  doi: 10.1007/978-3-031-01850-3
– ident: 4731_CR36
  doi: 10.1007/978-3-319-31204-0_25
– ident: 4731_CR31
  doi: 10.1145/2661829.2662009
– ident: 4731_CR60
  doi: 10.1609/aaai.v29i1.9277
– ident: 4731_CR5
  doi: 10.1145/3038912.3052628
– ident: 4731_CR19
  doi: 10.1145/1557019.1557047
– ident: 4731_CR22
  doi: 10.1145/1835804.1835935
SSID ssj0004373
Score 2.3054721
Snippet The top k-influencers problem, as a social influence maximization (SIM) problem, seeks out the best k actors, called the seed set, in a network with the...
SourceID crossref
springer
SourceType Index Database
Publisher
StartPage 2519
SubjectTerms Compilers
Computer Science
Interpreters
Processor Architectures
Programming Languages
Subtitle A computational investigation by genetic algorithm framework
Title Risk-Averse Influence Maximization
URI https://link.springer.com/article/10.1007/s11227-022-04731-w
Volume 79
WOSCitedRecordID wos000840587300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: P5Z
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: K7-
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: M7S
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-0484
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004373
  issn: 0920-8542
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWJ9lCDedCHZTbqbYxGLohapWnoL-woUsUpTrT_f2WRDKYig9yFklp39vmEeH8AZTyIpKMfcBOHGJSiWyI7WRPKQprTDGS1XCg3veL8vRqP0wQ-FFXW3e12SLF_qxbBbRCknrvs8jDmLyHwV1hDuhAvHweNwMQ3JqrpyiomRSGLqR2V-_sYyHC3XQkuI6TX_93NbsOkpZdCt7sA2rNjJDjRruYbAR-8unA7GxQvpuj4MG9zU4iTBvfwav_ppzD147l09XV4TL5FANGLrjBjDmEUWl-ShFMi-OsbpoRslmGIyD3lOqZCuWKq1UDZM81griwxIJXmkYsXZPjQmbxN7AIFC5pKnTDKGFtIgTCHx5sYaTJiMpqwF5_VJZe_VJoxssfPYuZ-h-1npfjZvwUV9UJmPiuIX88O_mR_BhpN9r7qnj6Exm37YE1jXn7NxMW3D6i0n7fJSfAMrgK5K
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPTFecV5LeKbBtqkXdrHIY4NtyFzjr2F3ApFnLJO5883aVPGQAR9P4SckOT7DufyAVzTKOAxpiY2MXBjAxSNeFNKxKmPE9ykBBcjhcY9OhjEk0ny6JrC8qravUpJFj_1stktwJgiW33uh5QEaLEOG6FBLFvIN3waL7shSZlXTkxgFEchdq0yP6-xCkerudACYtr1_21uF3YcpfRa5R3YgzU93Yd6Jdfgudd7AFfDLH9BLVuHob1uJU7i9flX9uq6MQ_huX0_uusgJ5GApMHWOVKKEG1YXJT6PDbsq6msHroSMRGEpz5NMY65TZZKGQvtJ2kohTYMSERpIEJByRHUpm9TfQyeMMwlTQgnxFhwZWDKEG-qtDIBk5KYNOCmOin2Xk7CYMuZx9Z9Ztxnhfts0YDb6qCYexX5L-YnfzO_hK3OqN9jve7g4RS2rQR8WUl9BrX57EOfw6b8nGf57KK4Gt9Hx7Be
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEB20ivhivWK9BvFNlya7STd5LGqxWEvxUvoW9gpBjKWN1s93NxdqQQTxfQiZZZdzhpkzB-CcBh4LMTW1iYEbW6AoxFpCIEZdHOEWJThfKTTs0X4_HI2iwTcVfz7tXrUkC02D3dKUZs2x1M258M3DmCI7ie76lHhotgwrvjUNsvX643CujCRFjzkyRVIY-LiUzfz8jUVoWuyL5nDTqf__Rzdho6SaTru4G1uwpNJtqFc2Dk75qnfg7CGZvqC2nc9QTrcyLXHu2WfyWqo0d-G5c_N0dYtK6wQkDOZmSEpClGF3gXZZaFhZS1qfdMlDwgnTLtUYh8w2UYUIuXIj7QuuDDPigfa4zynZg1r6lqp9cLhhNDoijBATwaSBL0PIqVTSFFJSYNKAi-rU4nGxISOe70K26ccm_ThPP5414LI6tLh8LdNfwg_-Fn4Ka4PrTtzr9u8OYd06wxcD1kdQyybv6hhWxUeWTCcn-S35AsTYuUI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk-Averse+Influence+Maximization&rft.jtitle=The+Journal+of+supercomputing&rft.au=NasehiMoghaddam%2C+Saeed&rft.au=Fathian%2C+Mohammad&rft.au=Amiri%2C+Babak&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=79&rft.issue=3&rft.spage=2519&rft.epage=2569&rft_id=info:doi/10.1007%2Fs11227-022-04731-w&rft.externalDocID=10_1007_s11227_022_04731_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon