Risk-Averse Influence Maximization A computational investigation by genetic algorithm framework
The top k-influencers problem, as a social influence maximization (SIM) problem, seeks out the best k actors, called the seed set, in a network with the greatest expected Influence Spread (IS). This problem is formulated as a mean-maximization of the IS with no consideration for the variance of the...
Saved in:
| Published in: | The Journal of supercomputing Vol. 79; no. 3; pp. 2519 - 2569 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Springer US
01.02.2023
|
| Subjects: | |
| ISSN: | 0920-8542, 1573-0484 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The top k-influencers problem, as a social influence maximization (SIM) problem, seeks out the best k actors, called the seed set, in a network with the greatest expected Influence Spread (IS). This problem is formulated as a mean-maximization of the IS with no consideration for the variance of the IS. Consequently, it is a risk-blind influence maximization (RBIM) problem. The variance minimization problem has a considerable tendency toward trivial solutions in the absence of a known exogenous threshold of the IS, which makes the formulation ineffective. As an alternative strategy to overcome the trivial solution challenge, risk-averse influence maximization (RAIM) is being investigated and compared empirically with RBIM based on theoretical findings from the literature. RAIM searches for the best k actors under a known diffusion process, whose conditional value-at-risk (CVaR) measure of the IS is maximized. RAIM lacks an approximation algorithm due to the absence of a proven submodularity feature for CVaR. Moreover, no metaheuristic framework was tuned under all of the IC, WC, LT, and TR diffusion models, despite numerous algorithmic contributions to RBIM. Thus, a Genetic Algorithm Framework for Influence Maximization (GAFIM) is proposed by drawing inspiration from the genetic algorithms proposed for RBIM but under all of the IC, WC, LT, and TR diffusion models. A novel approach to tuning GAFIM has been developed employing a community detection algorithm and applied to RAIM and RBIM. Based on the tuning results, the seed set size has a remarkable effect on GAFIM’s performance and highlights its superiority over the algorithms it was inspired by. Furthermore, a comparison to the closest genetic algorithm published in the literature demonstrates that GAFIM outperforms it by a factor of at least 20 in terms of efficiency while achieving a higher quality result. Having completed the quality investigation of GAFIM with satisfactory results, the comparison experiments support intriguing distinctions between RAIM and RBIM in the dominance factor, dominance rate, and dominance mutuality. The variance of the IS and the propagation time/median of the IS prepare the dominance factor(s) for RAIM/RBIM. According to the results, the significant dominance rates (48% vs. 65%), the unreciprocated dominance pattern in dominating the other problem in its dominance area (66% vs. 91%), the complete dominance pattern in dominating without being dominated (9% vs. 34%), and being nondominated (35% vs. 52%) are not as probable for RBIM as for RAIM. |
|---|---|
| AbstractList | The top k-influencers problem, as a social influence maximization (SIM) problem, seeks out the best k actors, called the seed set, in a network with the greatest expected Influence Spread (IS). This problem is formulated as a mean-maximization of the IS with no consideration for the variance of the IS. Consequently, it is a risk-blind influence maximization (RBIM) problem. The variance minimization problem has a considerable tendency toward trivial solutions in the absence of a known exogenous threshold of the IS, which makes the formulation ineffective. As an alternative strategy to overcome the trivial solution challenge, risk-averse influence maximization (RAIM) is being investigated and compared empirically with RBIM based on theoretical findings from the literature. RAIM searches for the best k actors under a known diffusion process, whose conditional value-at-risk (CVaR) measure of the IS is maximized. RAIM lacks an approximation algorithm due to the absence of a proven submodularity feature for CVaR. Moreover, no metaheuristic framework was tuned under all of the IC, WC, LT, and TR diffusion models, despite numerous algorithmic contributions to RBIM. Thus, a Genetic Algorithm Framework for Influence Maximization (GAFIM) is proposed by drawing inspiration from the genetic algorithms proposed for RBIM but under all of the IC, WC, LT, and TR diffusion models. A novel approach to tuning GAFIM has been developed employing a community detection algorithm and applied to RAIM and RBIM. Based on the tuning results, the seed set size has a remarkable effect on GAFIM’s performance and highlights its superiority over the algorithms it was inspired by. Furthermore, a comparison to the closest genetic algorithm published in the literature demonstrates that GAFIM outperforms it by a factor of at least 20 in terms of efficiency while achieving a higher quality result. Having completed the quality investigation of GAFIM with satisfactory results, the comparison experiments support intriguing distinctions between RAIM and RBIM in the dominance factor, dominance rate, and dominance mutuality. The variance of the IS and the propagation time/median of the IS prepare the dominance factor(s) for RAIM/RBIM. According to the results, the significant dominance rates (48% vs. 65%), the unreciprocated dominance pattern in dominating the other problem in its dominance area (66% vs. 91%), the complete dominance pattern in dominating without being dominated (9% vs. 34%), and being nondominated (35% vs. 52%) are not as probable for RBIM as for RAIM. |
| Author | Fathian, Mohammad Amiri, Babak NasehiMoghaddam, Saeed |
| Author_xml | – sequence: 1 givenname: Saeed surname: NasehiMoghaddam fullname: NasehiMoghaddam, Saeed organization: School of Industrial Engineering, Iran University of Science and Technology – sequence: 2 givenname: Mohammad orcidid: 0000-0002-6909-6974 surname: Fathian fullname: Fathian, Mohammad email: fathian@iust.ac.ir organization: School of Industrial Engineering, Iran University of Science and Technology – sequence: 3 givenname: Babak surname: Amiri fullname: Amiri, Babak organization: School of Industrial Engineering, Iran University of Science and Technology |
| BookMark | eNp9j0FLAzEQhYNUcFv9A56K9-hkJmuyx1LUFiqC6Dkku4lsbbOStFb99a6uZ0_Dg_ke7xuzUeyiZ-xcwKUAUFdZCETFAZGDVCT44YgVolTURy1HrIAKgetS4gkb57wGAEmKCnbx2OZXPnv3KfvpMobN3sfaT-_tR7ttv-yu7eIpOw52k_3Z352w59ubp_mCrx7ulvPZitcoccebhsiDoDKA1VDK64YQsHGaHNkAKiBqixqrutbOQxVk7byUwpVBOOkUTRgOvXXqck4-mLfUbm36NALMj6UZLE1vaX4tzaGHaIBy_xxffDLrbp9iv_M_6hsSU1aH |
| Cites_doi | 10.1145/3035918.3035924 10.1109/NAFIPS.1996.534789 10.1007/s11227-020-03355-2 10.1145/2723372.2723734 10.1145/2882903.2882929 10.1145/2588555.2593670 10.1145/1835804.1835934 10.1007/11871637_27 10.1145/956750.956769 10.1145/2661829.2662077 10.1109/ICDM.2011.132 10.1145/324133.324140 10.1016/j.tcs.2010.08.021 10.21314/JOR.2000.038 10.1109/TASE.2010.2052042 10.1109/TKDE.2015.2419659 10.1145/1963192.1963217 10.1609/aaai.v25i1.7838 10.1103/PhysRevE.69.026113 10.1111/j.2517-6161.1995.tb02031.x 10.1007/978-1-4757-6594-6_17 10.1016/j.orl.2015.08.001 10.1109/ASONAM.2016.7752390 10.1016/j.knosys.2018.06.013 10.1007/978-3-319-62389-4_52 10.1109/ICDM.2012.79 10.14778/3099622.3099623 10.1145/2882903.2915207 10.1103/PhysRevE.70.066111 10.1609/aaai.v28i1.8726 10.1198/1061860043515 10.1109/SMC.2015.446 10.1016/j.ins.2016.07.012 10.1080/00401706.1981.10487680 10.1145/2600428.2609592 10.1109/ICDM.2010.118 10.1109/TKDE.2018.2807843 10.1145/2939672.2939745 10.1137/1.9781611973402.70 10.1109/TKDE.2016.2624734 10.1145/2505515.2505541 10.1016/j.physa.2017.02.067 10.1109/CEC.2018.8477835 10.1145/1281192.1281239 10.1016/j.tcs.2014.02.027 10.1007/978-3-031-01850-3 10.1007/978-3-319-31204-0_25 10.1145/2661829.2662009 10.1609/aaai.v29i1.9277 10.1145/3038912.3052628 10.1145/1557019.1557047 10.1145/1835804.1835935 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11227-022-04731-w |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0484 |
| EndPage | 2569 |
| ExternalDocumentID | 10_1007_s11227_022_04731_w |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 123 199 1N0 1SB 2.D 203 28- 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDPE ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADMLS ADQRH ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARCSS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBD EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PT4 PT5 QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 WH7 WK8 YLTOR Z45 Z7R Z7X Z7Z Z83 Z88 Z8M Z8N Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ARAPS ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ K7- M7S PHGZM PHGZT PQGLB PTHSS |
| ID | FETCH-LOGICAL-c242t-dd33e0135f0a80546d3202db83b3af07f228a2829cc8be09f4cbe441b5f1b4b73 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000840587300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0920-8542 |
| IngestDate | Sat Nov 29 04:27:43 EST 2025 Fri Feb 21 02:45:16 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Conditional Value at Risk (CVaR) Genetic Algorithm Framework for Influence Maximization (GAFIM) Risk-Blind Influence Maximization (RBIM) Risk-Averse Influence Maximization (RAIM) Influence spread (IS) values variation Tuning by community detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c242t-dd33e0135f0a80546d3202db83b3af07f228a2829cc8be09f4cbe441b5f1b4b73 |
| ORCID | 0000-0002-6909-6974 |
| PageCount | 51 |
| ParticipantIDs | crossref_primary_10_1007_s11227_022_04731_w springer_journals_10_1007_s11227_022_04731_w |
| PublicationCentury | 2000 |
| PublicationDate | 20230200 2023-02-00 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 2 year: 2023 text: 20230200 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | An International Journal of High-Performance Computer Design, Analysis, and Use |
| PublicationTitle | The Journal of supercomputing |
| PublicationTitleAbbrev | J Supercomput |
| PublicationYear | 2023 |
| Publisher | Springer US |
| Publisher_xml | – name: Springer US |
| References | Lu W, Xiao X, Goyal A, Huang K, Lakshmanan LV (2017) Refutations on “ debunking the myths of influence maximization: an in-depth benchmarking study”. arXiv preprint. arXiv:1705.05144 Tsai C-W, Yang Y-C, Chiang M-C (2015) A genetic newgreedy algorithm for influence maximization in social network. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 2549–2554 Arora A, Galhotra S, Ranu S (2017) Debunking the myths of influence maximization: an in-depth benchmarking study. In: Proceedings of the ACM International Conference on Management of Data, pp 651–666 RockafellarRTUryasevSOptimization of conditional value-at-riskJ Risk20002214210.21314/JOR.2000.038 Cheng S, Shen H, Huang J, Chen W, Cheng X (2014) Imrank: influence maximization via finding self-consistent ranking. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 475–484 Chen W, Yuan Y, Zhang L (2010) Scalable influence maximization in social networks under the linear threshold model. In: IEEE 10th International Conference on Data Mining (ICDM), pp 88–97 Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp 47–48 WangXZhangYZhangWLinXChenCBring order into the samples: a novel scalable method for influence maximizationIEEE Trans Knowl Data Eng201729224325610.1109/TKDE.2016.2624734 Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 137–146 Nguyen HT, Thai MT, Dinh TN (2016) Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the International Conference on Management of Data, pp 695–710 NarayanamRNarahariYA shapley value-based approach to discover influential nodes in social networksIEEE Trans Autom Sci Eng20118113014710.1109/TASE.2010.2052042 HollanderMWolfeDAChickenENonparametric statistical methods2013HobokenWiley1279.62006 NewmanMEJGirvanMFinding and evaluating community structure in networksPhys Rev E200469202611310.1103/PhysRevE.69.026113 ZhouCZhangPZangWGuoLOn the upper bounds of spread for greedy algorithms in social network influence maximizationIEEE Trans Knowl Data Eng201527102770278310.1109/TKDE.2015.2419659 MaeharaTRisk averse submodular utility maximizationOper Res Lett2015435526529339419210.1016/j.orl.2015.08.0011408.90213 Chen W, Lin T, Tan Z, Zhao M, Zhou X (2016) Robust influence maximization. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 795–804 MarkowitzHPortfolio selectionJ Financ1952717791 Krömer P, Nowaková J (2017) Guided genetic algorithm for the influence maximization problem. In: International Computing and Combinatorics Conference, pp 630–641 Wang Y, Cong G, Song G, Xie K (2010) Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1039–1048 GongMYanJShenBMaLCaiQInfluence maximization in social networks based on discrete particle swarm optimizationInf Sci201636760061410.1016/j.ins.2016.07.012 AckermanEBen-ZwiOWolfovitzGCombinatorial model and bounds for target set selectionTheor Comput Sci201041144–4640174022276877110.1016/j.tcs.2010.08.0211235.90168 Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp 259–271 Ohsaka N, Yoshida Y (2017) Portfolio optimization for influence spread. In: Proceedings of the 26th International Conference on World Wide Web, pp 977–985 Jung K, Heo W, Chen W (2012) Irie: scalable and robust influence maximization in social networks. In: IEEE 12th International Conference on Data Mining (ICDM), pp 918–923 LiYFanJWangYTanK-LInfluence maximization on social graphs: a surveyIEEE Trans Knowl Data Eng2018301852187210.1109/TKDE.2018.2807843 Galhotra S, Arora A, Roy S (2016) Holistic influence maximization: Combining scalability and efficiency with opinion-aware models. In: Proceedings of the International Conference on Management of Data, pp 743–758 Kim J, Kim S-K, Yu H (2013) Scalable and parallelizable processing of influence maximization for large-scale social networks? In: IEEE 29th International Conference on Data Engineering (ICDE), pp 266–277 Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007) Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 420–429 Cohen E, Delling D, Pajor T, Werneck RF (2014) Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp 629–638 Charikar M, Naamad Y, Wirth A (2016) On approximating target set selection. In: LIPIcs-Leibniz International Proceedings in Informatics, vol 60 Liu Q, Xiang B, Chen E, Xiong H, Tang F, Yu JX (2014) Influence maximization over large-scale social networks: a bounded linear approach. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp 171–180 Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp 1539–1554 HeXKempeDStability and robustness in influence maximizationACM Trans Knowl Discov Data (TKDD)201812666 BenjaminiYHochbergYControlling the false discovery rate: a practical and powerful approach to multiple testingJ R Stat Soc Ser B (Methodol)199557128930013253920809.62014 Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 199–208 Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American Fuzzy Information Processing. IEEE, pp 519–523 Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K-I (2014) Fast and accurate influence maximization on large networks with pruned Monte-Carlo simulations. In: AAAI, pp 138–144 Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web ConoverWJJohnsonMEJohnsonMMA comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding dataTechnometrics198123435136110.1080/00401706.1981.10487680 Bucur D, Iacca G (2016) Influence maximization in social networks with genetic algorithms. In: European Conference on the Applications of Evolutionary Computation, pp 379–392 ZhangKDuHFeldmanMWMaximizing influence in a social network: improved results using a genetic algorithmPhys A Stat Mech Appl2017478203010.1016/j.physa.2017.02.0671400.90294 Krömer P, Nowaková J (2018) Guided genetic algorithm for information diffusion problems. In: IEEE Congress on Evolutionary Computation (CEC), pp 1–8 Cheng S, Shen H, Huang J, Zhang G, Cheng X (2013) Staticgreedy: solving the scalability-accuracy dilemma in influence maximization. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp 509–518 Banerjee S, Jenamani M, Pratihar DK (2018) A survey on influence maximization in a social network. arXiv preprint. arXiv:1808.05502 KleinbergJMAuthoritative sources in a hyperlinked environmentJ ACM (JACM)1999465604632174764910.1145/324133.3241401065.68660 Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp 75–86 Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. In: AAAI. http://networkrepository.com ChenWLakshmananLVCastilloCInformation and influence propagation in social networksSynth Lect Data Manag201354117710.1007/978-3-031-01850-3 Uryasev S, Rockafellar RT (2001) Conditional value-at-risk: optimization approach. In: Stochastic optimization: algorithms and applications. Springer, pp 411–435 CicaleseFCordascoGGarganoLMilaniÄMVaccaroULatency-bounded target set selection in social networksTheor Comput Sci2014535115319777910.1016/j.tcs.2014.02.0271358.05272 KhomamiMMDRezvanianAMeybodiMRBagheriACfin: a community-based algorithm for finding influential nodes in complex social networksJ Supercomput2021772207223610.1007/s11227-020-03355-2 JiangQSongGCongGWangYSiWXieKSimulated annealing based influence maximization in social networksAAAI20111112713210.1609/aaai.v25i1.7838 Weskida M, Michalski R (2016) Evolutionary algorithm for seed selection in social influence process. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, pp 1189–1196 Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 946–957 ClausetANewmanMEMooreCFinding community structure in very large networksPhys Rev E200470606611110.1103/PhysRevE.70.066111 HuangKWangSBevilacquaGXiaoXLakshmananLVRevisiting the stop-and-stare algorithms for influence maximizationProc VLDB Endow201710991392410.14778/3099622.3099623 Batagelj V, Mrvar A (2006) Pajek datasets, 2009. http://vlado.fmf.uni-lj.si/pub/networks/data Goyal A, Lu W, Lakshmanan LV (2011) Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: IEEE 11th International Conference on Data Mining (ICDM), pp 211–220 Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Procee MMD Khomami (4731_CR45) 2021; 77 MEJ Newman (4731_CR58) 2004; 69 K Zhang (4731_CR41) 2017; 478 4731_CR47 4731_CR48 4731_CR49 4731_CR43 RT Rockafellar (4731_CR2) 2000; 2 4731_CR5 4731_CR44 K Huang (4731_CR51) 2017; 10 4731_CR8 E Ackerman (4731_CR10) 2010; 411 4731_CR7 H Markowitz (4731_CR52) 1952; 7 4731_CR9 4731_CR40 M Hollander (4731_CR55) 2013 4731_CR1 C Zhou (4731_CR35) 2015; 27 4731_CR3 4731_CR18 4731_CR19 WJ Conover (4731_CR61) 1981; 23 A Clauset (4731_CR57) 2004; 70 4731_CR16 4731_CR17 J Tang (4731_CR42) 2018; 160 4731_CR54 4731_CR12 4731_CR13 R Narayanam (4731_CR26) 2011; 8 4731_CR53 T Maehara (4731_CR4) 2015; 43 Y Benjamini (4731_CR59) 1995; 57 4731_CR29 X Wang (4731_CR50) 2017; 29 H-P Piepho (4731_CR56) 2004; 13 Q Jiang (4731_CR25) 2011; 11 4731_CR27 X He (4731_CR14) 2018; 12 4731_CR28 4731_CR21 4731_CR22 4731_CR23 4731_CR24 F Cicalese (4731_CR11) 2014; 535 4731_CR20 Y Li (4731_CR46) 2018; 30 W Chen (4731_CR6) 2013; 5 4731_CR60 M Gong (4731_CR38) 2016; 367 4731_CR36 4731_CR37 4731_CR39 4731_CR32 4731_CR33 4731_CR34 4731_CR30 4731_CR31 JM Kleinberg (4731_CR15) 1999; 46 |
| References_xml | – reference: Kim J, Kim S-K, Yu H (2013) Scalable and parallelizable processing of influence maximization for large-scale social networks? In: IEEE 29th International Conference on Data Engineering (ICDE), pp 266–277 – reference: Cohen E, Delling D, Pajor T, Werneck RF (2014) Sketch-based influence maximization and computation: scaling up with guarantees. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp 629–638 – reference: Rossi RA, Ahmed NK (2015) The network data repository with interactive graph analytics and visualization. In: AAAI. http://networkrepository.com – reference: Galhotra S, Arora A, Roy S (2016) Holistic influence maximization: Combining scalability and efficiency with opinion-aware models. In: Proceedings of the International Conference on Management of Data, pp 743–758 – reference: Ohsaka N, Yoshida Y (2017) Portfolio optimization for influence spread. In: Proceedings of the 26th International Conference on World Wide Web, pp 977–985 – reference: Tsai C-W, Yang Y-C, Chiang M-C (2015) A genetic newgreedy algorithm for influence maximization in social network. In: IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp 2549–2554 – reference: ConoverWJJohnsonMEJohnsonMMA comparative study of tests for homogeneity of variances, with applications to the outer continental shelf bidding dataTechnometrics198123435136110.1080/00401706.1981.10487680 – reference: Chen W, Lin T, Tan Z, Zhao M, Zhou X (2016) Robust influence maximization. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 795–804 – reference: Jung K, Heo W, Chen W (2012) Irie: scalable and robust influence maximization in social networks. In: IEEE 12th International Conference on Data Mining (ICDM), pp 918–923 – reference: RockafellarRTUryasevSOptimization of conditional value-at-riskJ Risk20002214210.21314/JOR.2000.038 – reference: TangJZhangRYaoYZhaoZWangPLiHYuanJMaximizing the spread of influence via the collective intelligence of discrete bat algorithmKnowl Based Syst20181608810310.1016/j.knosys.2018.06.013 – reference: Chen W, Yuan Y, Zhang L (2010) Scalable influence maximization in social networks under the linear threshold model. In: IEEE 10th International Conference on Data Mining (ICDM), pp 88–97 – reference: Cheng S, Shen H, Huang J, Chen W, Cheng X (2014) Imrank: influence maximization via finding self-consistent ranking. In: Proceedings of the 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp 475–484 – reference: Cheng S, Shen H, Huang J, Zhang G, Cheng X (2013) Staticgreedy: solving the scalability-accuracy dilemma in influence maximization. In: Proceedings of the 22nd ACM International Conference on Information and Knowledge Management, pp 509–518 – reference: MaeharaTRisk averse submodular utility maximizationOper Res Lett2015435526529339419210.1016/j.orl.2015.08.0011408.90213 – reference: NarayanamRNarahariYA shapley value-based approach to discover influential nodes in social networksIEEE Trans Autom Sci Eng20118113014710.1109/TASE.2010.2052042 – reference: Borgs C, Brautbar M, Chayes J, Lucier B (2014) Maximizing social influence in nearly optimal time. In: Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, pp 946–957 – reference: Krömer P, Nowaková J (2017) Guided genetic algorithm for the influence maximization problem. In: International Computing and Combinatorics Conference, pp 630–641 – reference: JiangQSongGCongGWangYSiWXieKSimulated annealing based influence maximization in social networksAAAI20111112713210.1609/aaai.v25i1.7838 – reference: Lu W, Xiao X, Goyal A, Huang K, Lakshmanan LV (2017) Refutations on “ debunking the myths of influence maximization: an in-depth benchmarking study”. arXiv preprint. arXiv:1705.05144 – reference: MarkowitzHPortfolio selectionJ Financ1952717791 – reference: PiephoH-PAn algorithm for a letter-based representation of all-pairwise comparisonsJ Comput Graph Stat2004132456466206399510.1198/1061860043515 – reference: Tang Y, Xiao X, Shi Y (2014) Influence maximization: near-optimal time complexity meets practical efficiency. In: Proceedings of the 2014 ACM SIGMOD International Conference on Management of Data, pp 75–86 – reference: Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 199–208 – reference: Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to the web – reference: ZhouCZhangPZangWGuoLOn the upper bounds of spread for greedy algorithms in social network influence maximizationIEEE Trans Knowl Data Eng201527102770278310.1109/TKDE.2015.2419659 – reference: AckermanEBen-ZwiOWolfovitzGCombinatorial model and bounds for target set selectionTheor Comput Sci201041144–4640174022276877110.1016/j.tcs.2010.08.0211235.90168 – reference: Leskovec J, Krause A, Guestrin C, Faloutsos C, VanBriesen J, Glance N (2007) Cost-effective outbreak detection in networks. In: Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 420–429 – reference: HollanderMWolfeDAChickenENonparametric statistical methods2013HobokenWiley1279.62006 – reference: Goyal A, Lu W, Lakshmanan LV (2011) Celf++: optimizing the greedy algorithm for influence maximization in social networks. In: Proceedings of the 20th International Conference Companion on World Wide Web, pp 47–48 – reference: GongMYanJShenBMaLCaiQInfluence maximization in social networks based on discrete particle swarm optimizationInf Sci201636760061410.1016/j.ins.2016.07.012 – reference: Charikar M, Naamad Y, Wirth A (2016) On approximating target set selection. In: LIPIcs-Leibniz International Proceedings in Informatics, vol 60 – reference: ZhangKDuHFeldmanMWMaximizing influence in a social network: improved results using a genetic algorithmPhys A Stat Mech Appl2017478203010.1016/j.physa.2017.02.0671400.90294 – reference: Tang Y, Shi Y, Xiao X (2015) Influence maximization in near-linear time: a martingale approach. In: Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data, pp 1539–1554 – reference: Krömer P, Nowaková J (2018) Guided genetic algorithm for information diffusion problems. In: IEEE Congress on Evolutionary Computation (CEC), pp 1–8 – reference: Kempe D, Kleinberg J, Tardos É (2003) Maximizing the spread of influence through a social network. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 137–146 – reference: Bucur D, Iacca G (2016) Influence maximization in social networks with genetic algorithms. In: European Conference on the Applications of Evolutionary Computation, pp 379–392 – reference: LiYFanJWangYTanK-LInfluence maximization on social graphs: a surveyIEEE Trans Knowl Data Eng2018301852187210.1109/TKDE.2018.2807843 – reference: ClausetANewmanMEMooreCFinding community structure in very large networksPhys Rev E200470606611110.1103/PhysRevE.70.066111 – reference: HeXKempeDStability and robustness in influence maximizationACM Trans Knowl Discov Data (TKDD)201812666 – reference: NewmanMEJGirvanMFinding and evaluating community structure in networksPhys Rev E200469202611310.1103/PhysRevE.69.026113 – reference: Nguyen HT, Thai MT, Dinh TN (2016) Stop-and-stare: optimal sampling algorithms for viral marketing in billion-scale networks. In: Proceedings of the International Conference on Management of Data, pp 695–710 – reference: HuangKWangSBevilacquaGXiaoXLakshmananLVRevisiting the stop-and-stare algorithms for influence maximizationProc VLDB Endow201710991392410.14778/3099622.3099623 – reference: Storn R (1996) On the usage of differential evolution for function optimization. In: Proceedings of North American Fuzzy Information Processing. IEEE, pp 519–523 – reference: BenjaminiYHochbergYControlling the false discovery rate: a practical and powerful approach to multiple testingJ R Stat Soc Ser B (Methodol)199557128930013253920809.62014 – reference: WangXZhangYZhangWLinXChenCBring order into the samples: a novel scalable method for influence maximizationIEEE Trans Knowl Data Eng201729224325610.1109/TKDE.2016.2624734 – reference: Banerjee S, Jenamani M, Pratihar DK (2018) A survey on influence maximization in a social network. arXiv preprint. arXiv:1808.05502 – reference: Chen W, Wang C, Wang Y (2010) Scalable influence maximization for prevalent viral marketing in large-scale social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1029–1038 – reference: Ohsaka N, Akiba T, Yoshida Y, Kawarabayashi K-I (2014) Fast and accurate influence maximization on large networks with pruned Monte-Carlo simulations. In: AAAI, pp 138–144 – reference: Batagelj V, Mrvar A (2006) Pajek datasets, 2009. http://vlado.fmf.uni-lj.si/pub/networks/data/ – reference: Liu Q, Xiang B, Chen E, Xiong H, Tang F, Yu JX (2014) Influence maximization over large-scale social networks: a bounded linear approach. In: Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management, pp 171–180 – reference: Goyal A, Lu W, Lakshmanan LV (2011) Simpath: an efficient algorithm for influence maximization under the linear threshold model. In: IEEE 11th International Conference on Data Mining (ICDM), pp 211–220 – reference: Arora A, Galhotra S, Ranu S (2017) Debunking the myths of influence maximization: an in-depth benchmarking study. In: Proceedings of the ACM International Conference on Management of Data, pp 651–666 – reference: Kimura M, Saito K (2006) Tractable models for information diffusion in social networks. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp 259–271 – reference: CicaleseFCordascoGGarganoLMilaniÄMVaccaroULatency-bounded target set selection in social networksTheor Comput Sci2014535115319777910.1016/j.tcs.2014.02.0271358.05272 – reference: KleinbergJMAuthoritative sources in a hyperlinked environmentJ ACM (JACM)1999465604632174764910.1145/324133.3241401065.68660 – reference: Uryasev S, Rockafellar RT (2001) Conditional value-at-risk: optimization approach. In: Stochastic optimization: algorithms and applications. Springer, pp 411–435 – reference: Weskida M, Michalski R (2016) Evolutionary algorithm for seed selection in social influence process. In: IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, pp 1189–1196 – reference: Wang Y, Cong G, Song G, Xie K (2010) Community-based greedy algorithm for mining top-k influential nodes in mobile social networks. In: Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp 1039–1048 – reference: KhomamiMMDRezvanianAMeybodiMRBagheriACfin: a community-based algorithm for finding influential nodes in complex social networksJ Supercomput2021772207223610.1007/s11227-020-03355-2 – reference: ChenWLakshmananLVCastilloCInformation and influence propagation in social networksSynth Lect Data Manag201354117710.1007/978-3-031-01850-3 – ident: 4731_CR16 – ident: 4731_CR47 doi: 10.1145/3035918.3035924 – ident: 4731_CR53 doi: 10.1109/NAFIPS.1996.534789 – ident: 4731_CR9 – ident: 4731_CR12 – volume: 77 start-page: 2207 year: 2021 ident: 4731_CR45 publication-title: J Supercomput doi: 10.1007/s11227-020-03355-2 – ident: 4731_CR33 doi: 10.1145/2723372.2723734 – ident: 4731_CR37 doi: 10.1145/2882903.2882929 – ident: 4731_CR32 doi: 10.1145/2588555.2593670 – ident: 4731_CR20 doi: 10.1145/1835804.1835934 – volume-title: Nonparametric statistical methods year: 2013 ident: 4731_CR55 – volume: 12 start-page: 66 issue: 6 year: 2018 ident: 4731_CR14 publication-title: ACM Trans Knowl Discov Data (TKDD) – ident: 4731_CR17 doi: 10.1007/11871637_27 – ident: 4731_CR1 doi: 10.1145/956750.956769 – ident: 4731_CR30 doi: 10.1145/2661829.2662077 – ident: 4731_CR24 doi: 10.1109/ICDM.2011.132 – volume: 7 start-page: 77 issue: 1 year: 1952 ident: 4731_CR52 publication-title: J Financ – volume: 46 start-page: 604 issue: 5 year: 1999 ident: 4731_CR15 publication-title: J ACM (JACM) doi: 10.1145/324133.324140 – volume: 411 start-page: 4017 issue: 44–46 year: 2010 ident: 4731_CR10 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2010.08.021 – volume: 2 start-page: 21 year: 2000 ident: 4731_CR2 publication-title: J Risk doi: 10.21314/JOR.2000.038 – volume: 8 start-page: 130 issue: 1 year: 2011 ident: 4731_CR26 publication-title: IEEE Trans Autom Sci Eng doi: 10.1109/TASE.2010.2052042 – volume: 27 start-page: 2770 issue: 10 year: 2015 ident: 4731_CR35 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2419659 – ident: 4731_CR23 doi: 10.1145/1963192.1963217 – volume: 11 start-page: 127 year: 2011 ident: 4731_CR25 publication-title: AAAI doi: 10.1609/aaai.v25i1.7838 – volume: 69 start-page: 026113 issue: 2 year: 2004 ident: 4731_CR58 publication-title: Phys Rev E doi: 10.1103/PhysRevE.69.026113 – volume: 57 start-page: 289 issue: 1 year: 1995 ident: 4731_CR59 publication-title: J R Stat Soc Ser B (Methodol) doi: 10.1111/j.2517-6161.1995.tb02031.x – ident: 4731_CR3 doi: 10.1007/978-1-4757-6594-6_17 – volume: 43 start-page: 526 issue: 5 year: 2015 ident: 4731_CR4 publication-title: Oper Res Lett doi: 10.1016/j.orl.2015.08.001 – ident: 4731_CR40 doi: 10.1109/ASONAM.2016.7752390 – volume: 160 start-page: 88 year: 2018 ident: 4731_CR42 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2018.06.013 – ident: 4731_CR43 doi: 10.1007/978-3-319-62389-4_52 – ident: 4731_CR27 doi: 10.1109/ICDM.2012.79 – volume: 10 start-page: 913 issue: 9 year: 2017 ident: 4731_CR51 publication-title: Proc VLDB Endow doi: 10.14778/3099622.3099623 – ident: 4731_CR39 doi: 10.1145/2882903.2915207 – volume: 70 start-page: 066111 issue: 6 year: 2004 ident: 4731_CR57 publication-title: Phys Rev E doi: 10.1103/PhysRevE.70.066111 – ident: 4731_CR8 doi: 10.1609/aaai.v28i1.8726 – volume: 13 start-page: 456 issue: 2 year: 2004 ident: 4731_CR56 publication-title: J Comput Graph Stat doi: 10.1198/1061860043515 – ident: 4731_CR34 doi: 10.1109/SMC.2015.446 – volume: 367 start-page: 600 year: 2016 ident: 4731_CR38 publication-title: Inf Sci doi: 10.1016/j.ins.2016.07.012 – volume: 23 start-page: 351 issue: 4 year: 1981 ident: 4731_CR61 publication-title: Technometrics doi: 10.1080/00401706.1981.10487680 – ident: 4731_CR29 doi: 10.1145/2600428.2609592 – ident: 4731_CR21 doi: 10.1109/ICDM.2010.118 – ident: 4731_CR28 – volume: 30 start-page: 1852 year: 2018 ident: 4731_CR46 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2018.2807843 – ident: 4731_CR13 doi: 10.1145/2939672.2939745 – ident: 4731_CR49 doi: 10.1137/1.9781611973402.70 – volume: 29 start-page: 243 issue: 2 year: 2017 ident: 4731_CR50 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2016.2624734 – ident: 4731_CR7 doi: 10.1145/2505515.2505541 – volume: 478 start-page: 20 year: 2017 ident: 4731_CR41 publication-title: Phys A Stat Mech Appl doi: 10.1016/j.physa.2017.02.067 – ident: 4731_CR44 doi: 10.1109/CEC.2018.8477835 – ident: 4731_CR48 – ident: 4731_CR18 doi: 10.1145/1281192.1281239 – volume: 535 start-page: 1 year: 2014 ident: 4731_CR11 publication-title: Theor Comput Sci doi: 10.1016/j.tcs.2014.02.027 – ident: 4731_CR54 – volume: 5 start-page: 1 issue: 4 year: 2013 ident: 4731_CR6 publication-title: Synth Lect Data Manag doi: 10.1007/978-3-031-01850-3 – ident: 4731_CR36 doi: 10.1007/978-3-319-31204-0_25 – ident: 4731_CR31 doi: 10.1145/2661829.2662009 – ident: 4731_CR60 doi: 10.1609/aaai.v29i1.9277 – ident: 4731_CR5 doi: 10.1145/3038912.3052628 – ident: 4731_CR19 doi: 10.1145/1557019.1557047 – ident: 4731_CR22 doi: 10.1145/1835804.1835935 |
| SSID | ssj0004373 |
| Score | 2.3054721 |
| Snippet | The top k-influencers problem, as a social influence maximization (SIM) problem, seeks out the best k actors, called the seed set, in a network with the... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| StartPage | 2519 |
| SubjectTerms | Compilers Computer Science Interpreters Processor Architectures Programming Languages |
| Subtitle | A computational investigation by genetic algorithm framework |
| Title | Risk-Averse Influence Maximization |
| URI | https://link.springer.com/article/10.1007/s11227-022-04731-w |
| Volume | 79 |
| WOSCitedRecordID | wos000840587300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1573-0484 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: P5Z dateStart: 20230101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1573-0484 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: K7- dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1573-0484 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: M7S dateStart: 20230101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1573-0484 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-0484 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004373 issn: 0920-8542 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60evBifWJ9lCDedCHZTbqbYxGLohapWnoL-woUsUpTrT_f2WRDKYig9yFklp39vmEeH8AZTyIpKMfcBOHGJSiWyI7WRPKQprTDGS1XCg3veL8vRqP0wQ-FFXW3e12SLF_qxbBbRCknrvs8jDmLyHwV1hDuhAvHweNwMQ3JqrpyiomRSGLqR2V-_sYyHC3XQkuI6TX_93NbsOkpZdCt7sA2rNjJDjRruYbAR-8unA7GxQvpuj4MG9zU4iTBvfwav_ppzD147l09XV4TL5FANGLrjBjDmEUWl-ShFMi-OsbpoRslmGIyD3lOqZCuWKq1UDZM81griwxIJXmkYsXZPjQmbxN7AIFC5pKnTDKGFtIgTCHx5sYaTJiMpqwF5_VJZe_VJoxssfPYuZ-h-1npfjZvwUV9UJmPiuIX88O_mR_BhpN9r7qnj6Exm37YE1jXn7NxMW3D6i0n7fJSfAMrgK5K |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFPTFecV5LeKbBtqkXdrHIY4NtyFzjr2F3ApFnLJO5883aVPGQAR9P4SckOT7DufyAVzTKOAxpiY2MXBjAxSNeFNKxKmPE9ykBBcjhcY9OhjEk0ny6JrC8qravUpJFj_1stktwJgiW33uh5QEaLEOG6FBLFvIN3waL7shSZlXTkxgFEchdq0yP6-xCkerudACYtr1_21uF3YcpfRa5R3YgzU93Yd6Jdfgudd7AFfDLH9BLVuHob1uJU7i9flX9uq6MQ_huX0_uusgJ5GApMHWOVKKEG1YXJT6PDbsq6msHroSMRGEpz5NMY65TZZKGQvtJ2kohTYMSERpIEJByRHUpm9TfQyeMMwlTQgnxFhwZWDKEG-qtDIBk5KYNOCmOin2Xk7CYMuZx9Z9Ztxnhfts0YDb6qCYexX5L-YnfzO_hK3OqN9jve7g4RS2rQR8WUl9BrX57EOfw6b8nGf57KK4Gt9Hx7Be |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bSsNAEB20ivhivWK9BvFNlya7STd5LGqxWEvxUvoW9gpBjKWN1s93NxdqQQTxfQiZZZdzhpkzB-CcBh4LMTW1iYEbW6AoxFpCIEZdHOEWJThfKTTs0X4_HI2iwTcVfz7tXrUkC02D3dKUZs2x1M258M3DmCI7ie76lHhotgwrvjUNsvX643CujCRFjzkyRVIY-LiUzfz8jUVoWuyL5nDTqf__Rzdho6SaTru4G1uwpNJtqFc2Dk75qnfg7CGZvqC2nc9QTrcyLXHu2WfyWqo0d-G5c_N0dYtK6wQkDOZmSEpClGF3gXZZaFhZS1qfdMlDwgnTLtUYh8w2UYUIuXIj7QuuDDPigfa4zynZg1r6lqp9cLhhNDoijBATwaSBL0PIqVTSFFJSYNKAi-rU4nGxISOe70K26ccm_ThPP5414LI6tLh8LdNfwg_-Fn4Ka4PrTtzr9u8OYd06wxcD1kdQyybv6hhWxUeWTCcn-S35AsTYuUI |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Risk-Averse+Influence+Maximization&rft.jtitle=The+Journal+of+supercomputing&rft.au=NasehiMoghaddam%2C+Saeed&rft.au=Fathian%2C+Mohammad&rft.au=Amiri%2C+Babak&rft.date=2023-02-01&rft.pub=Springer+US&rft.issn=0920-8542&rft.eissn=1573-0484&rft.volume=79&rft.issue=3&rft.spage=2519&rft.epage=2569&rft_id=info:doi/10.1007%2Fs11227-022-04731-w&rft.externalDocID=10_1007_s11227_022_04731_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-8542&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-8542&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-8542&client=summon |