Proximal gradient methods with inexact oracle of degree q for composite optimization
We introduce the concept of inexact first-order oracle of degree q for a possibly nonconvex and nonsmooth function, which naturally appears in the context of approximate gradient, weak level of smoothness and other situations. Our definition is less conservative than those found in the existing lite...
Saved in:
| Published in: | Optimization letters Vol. 19; no. 2; pp. 285 - 306 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
01.03.2025
|
| ISSN: | 1862-4472, 1862-4480 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We introduce the concept of inexact first-order oracle of degree
q
for a possibly nonconvex and nonsmooth function, which naturally appears in the context of approximate gradient, weak level of smoothness and other situations. Our definition is less conservative than those found in the existing literature, and it can be viewed as an interpolation between fully exact and the existing inexact first-order oracle definitions. We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non)convex composite minimization problems. We derive complexity estimates and study the dependence between the accuracy of the oracle and the desired accuracy of the gradient or of the objective function. Our results show that better rates can be obtained both theoretically and in numerical simulations when
q
is large. |
|---|---|
| AbstractList | We introduce the concept of inexact first-order oracle of degree
q
for a possibly nonconvex and nonsmooth function, which naturally appears in the context of approximate gradient, weak level of smoothness and other situations. Our definition is less conservative than those found in the existing literature, and it can be viewed as an interpolation between fully exact and the existing inexact first-order oracle definitions. We analyze the convergence behavior of a (fast) inexact proximal gradient method using such an oracle for solving (non)convex composite minimization problems. We derive complexity estimates and study the dependence between the accuracy of the oracle and the desired accuracy of the gradient or of the objective function. Our results show that better rates can be obtained both theoretically and in numerical simulations when
q
is large. |
| Author | Necoara, Ion Glineur, François Nabou, Yassine |
| Author_xml | – sequence: 1 givenname: Yassine surname: Nabou fullname: Nabou, Yassine – sequence: 2 givenname: François surname: Glineur fullname: Glineur, François – sequence: 3 givenname: Ion surname: Necoara fullname: Necoara, Ion |
| BookMark | eNo9kM9KAzEYxINUsK2-gKe8wGq-bEw2Ryn-g4Ie6jlkk2_byO6mJgGrT-9qxcMwAwMD81uQ2RhHJOQS2BUwpq4zwI1mFeNiEkBT6RMyh0bySoiGzf6z4mdkkfMbYxJA6znZvKR4CIPt6TZZH3AsdMCyiz7Tj1B2NIx4sK7QmKzrkcaOetwmRPpOu5ioi8M-5lCmZl_CEL5sCXE8J6ed7TNe_PmSvN7fbVaP1fr54Wl1u64cF7xUvrVWa6k6Ibh23qmm5bzRLQLX3oFvatVJJ7VgTjnGUIOS0gsuaovMoq2XhB93XYo5J-zMPk1f0qcBZn64mCMXM3Exv1yMrr8BVGhZWg |
| Cites_doi | 10.1007/978-3-7908-2604-3_16 10.1007/s10957-016-0999-6 10.1137/060676386 10.20537/2076-7633-2022-14-2-321-334 10.1007/978-3-030-22629-9_8 10.1080/10556788.2023.2261604 10.1007/s10589-017-9912-y 10.1007/978-3-642-02431-3 10.1007/s10107-013-0677-5 10.1007/978-1-4419-8853-9 10.1111/j.2517-6161.1996.tb02080.x 10.1007/3-540-31246-3 10.1007/s10107-012-0629-5 10.1137/1.9781611974997 10.1016/0041-5553(63)90382-3 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s11590-024-02118-9 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1862-4480 |
| EndPage | 306 |
| ExternalDocumentID | 10_1007_s11590_024_02118_9 |
| GroupedDBID | -Y2 .VR 06D 0R~ 0VY 123 1N0 203 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYXX ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACSTC ACZOJ ADHHG ADHIR ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFGCZ AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ATHPR AXYYD AYFIA AYJHY B-. BA0 BAPOH BDATZ BGNMA BSONS CAG CITATION COF CS3 CSCUP DDRTE DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS H13 HF~ HG5 HG6 HLICF HMJXF HQYDN HRMNR HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LLZTM M4Y MA- N9A NPVJJ NQJWS NU0 O9- O93 O9J OAM P2P P9M PF0 PT4 QOS R89 R9I ROL RPX RSV S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 ZMTXR ~A9 |
| ID | FETCH-LOGICAL-c242t-dbaa9967f4429cdc78b2289be129dc1d837f6c6940c7c00e91766d4243ae0aea3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001215975400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1862-4472 |
| IngestDate | Sat Nov 29 02:44:14 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c242t-dbaa9967f4429cdc78b2289be129dc1d837f6c6940c7c00e91766d4243ae0aea3 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s11590-024-02118-9.pdf |
| PageCount | 22 |
| ParticipantIDs | crossref_primary_10_1007_s11590_024_02118_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-00 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Optimization letters |
| PublicationYear | 2025 |
| References | 2118_CR2 B Mordukhovich (2118_CR13) 2006 A Agafonov (2118_CR1) 2017 2118_CR3 J-B Hiriart-Urruty (2118_CR11) 1979; 60 Yu Nesterov (2118_CR15) 2013; 140 PW Wang (2118_CR20) 2014; 15 Y Nesterov (2118_CR14) 2004 2118_CR4 2118_CR5 P Dvurechensky (2118_CR9) 2022; 14 A d’Aspremont (2118_CR6) 2008; 19 O Devolder (2118_CR7) 2013; 146 P Dvurechensky (2118_CR8) 2016; 171 2118_CR10 L Stella (2118_CR12) 2017; 67 R Rockafellar (2118_CR17) 1998 R Tibshirani (2118_CR19) 1996; 58 BT Polyak (2118_CR16) 1963; 3 2118_CR18 |
| References_xml | – ident: 2118_CR4 doi: 10.1007/978-3-7908-2604-3_16 – volume: 171 start-page: 121 issue: 1 year: 2016 ident: 2118_CR8 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-016-0999-6 – volume: 19 start-page: 1171 issue: 3 year: 2008 ident: 2118_CR6 publication-title: SIAM J. Optim. doi: 10.1137/060676386 – volume: 14 start-page: 321 issue: 2 year: 2022 ident: 2118_CR9 publication-title: Comput. Res. Model. doi: 10.20537/2076-7633-2022-14-2-321-334 – ident: 2118_CR18 doi: 10.1007/978-3-030-22629-9_8 – year: 2017 ident: 2118_CR1 publication-title: Optim. Methods Softw. doi: 10.1080/10556788.2023.2261604 – volume: 67 start-page: 443 year: 2017 ident: 2118_CR12 publication-title: Comput. Optim. Appl. doi: 10.1007/s10589-017-9912-y – ident: 2118_CR10 – volume-title: Variational Analysis year: 1998 ident: 2118_CR17 doi: 10.1007/978-3-642-02431-3 – volume: 146 start-page: 37 year: 2013 ident: 2118_CR7 publication-title: Math. Prog. doi: 10.1007/s10107-013-0677-5 – volume-title: Introductory lectures on convex optimization: a basic course year: 2004 ident: 2118_CR14 doi: 10.1007/978-1-4419-8853-9 – volume: 58 start-page: 267 issue: 1 year: 1996 ident: 2118_CR19 publication-title: J. Roy. Stat. Soc. doi: 10.1111/j.2517-6161.1996.tb02080.x – volume-title: Variational analysis and generalized differentiation: basic theory year: 2006 ident: 2118_CR13 doi: 10.1007/3-540-31246-3 – volume: 140 start-page: 125 issue: 1 year: 2013 ident: 2118_CR15 publication-title: Math. Program. doi: 10.1007/s10107-012-0629-5 – ident: 2118_CR2 doi: 10.1137/1.9781611974997 – volume: 15 start-page: 1523 issue: 4 year: 2014 ident: 2118_CR20 publication-title: J. Mach. Learn. Res. – volume: 60 start-page: 57 year: 1979 ident: 2118_CR11 publication-title: Mem. Soc. Math. France – volume: 3 start-page: 864 issue: 4 year: 1963 ident: 2118_CR16 publication-title: Comput. Math. Math. Phys. doi: 10.1016/0041-5553(63)90382-3 – ident: 2118_CR3 – ident: 2118_CR5 |
| SSID | ssj0061199 |
| Score | 2.3507268 |
| Snippet | We introduce the concept of inexact first-order oracle of degree
q
for a possibly nonconvex and nonsmooth function, which naturally appears in the context of... |
| SourceID | crossref |
| SourceType | Index Database |
| StartPage | 285 |
| Title | Proximal gradient methods with inexact oracle of degree q for composite optimization |
| Volume | 19 |
| WOSCitedRecordID | wos001215975400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1862-4480 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061199 issn: 1862-4472 databaseCode: RSV dateStart: 20070101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1VFQMMfCO-5YENLJLUjeMRISqmqoKCukXO-YI6tKVpQP35nJNUdIChQ6acLOss-b2X3N0DuCHlyMS5lphlxAKla2XCKCkxd7nVieqaTm02ofv9ZDQygxbc_fsH_37BnMUEkrGEH6bD0nfrhXHk7QpeXt9X124c1maRYeLbgJSOmg6Zv5dYQ6E1OOntbbaRfdhtaKN4qM_5AFo0PYSdtWGCRzAcFLPleMJRH0VVx1WK2h56IfzHVsGRS4ul4DPnJcQsF45YbJOYCyauwteW-wIufsO3yKRpzzyGt97T8PFZNp4JEhlsS-kya1nC6Fwx0KBDnWQRa6qMGNcdho71aB5jbFSAGoOAjB8Q6VSkOpYCS7ZzAu3pbEqnIDxVckmQoZ8xT-hYiDBbUSZG23WMrWdwu8ph-lmPxkh_hyD7XKWcq7TKVWrON4q-gO3IG-1WxV6X0C6LL7qCLfwux4viujr4H9CHphU |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Proximal+gradient+methods+with+inexact+oracle+of+degree+q+for+composite+optimization&rft.jtitle=Optimization+letters&rft.au=Nabou%2C+Yassine&rft.au=Glineur%2C+Fran%C3%A7ois&rft.au=Necoara%2C+Ion&rft.date=2025-03-01&rft.issn=1862-4472&rft.eissn=1862-4480&rft.volume=19&rft.issue=2&rft.spage=285&rft.epage=306&rft_id=info:doi/10.1007%2Fs11590-024-02118-9&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11590_024_02118_9 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1862-4472&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1862-4472&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1862-4472&client=summon |