Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller

Autonomous underwater vehicles (AUVs) have broad applications owing to their small size, low weight, strong ability to operate autonomously, and ability to replace humans in dangerous operations. AUV motion control systems can ensure stable operation in complex ocean environments and have attracted...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean engineering Jg. 257; S. 111493
Hauptverfasser: Liu, Lu, Zhang, Lichuan, Pan, Guang, Zhang, Shuo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.08.2022
Schlagworte:
ISSN:0029-8018, 1873-5258
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Autonomous underwater vehicles (AUVs) have broad applications owing to their small size, low weight, strong ability to operate autonomously, and ability to replace humans in dangerous operations. AUV motion control systems can ensure stable operation in complex ocean environments and have attracted significant research attention in marine science and technology. The main difficulties with AUV motion control include the large uncertainties of dynamic and hydrodynamic characteristics and time delay of the signal transmission channel. In this study, we propose a robust fractional-order proportional–integral–derivative (FOPID) controller design for an AUV yaw control system. First, a three-dimensional stability region analysis method is proposed to achieve fractional orders. Unlike other stability region analysis methods, the proposed method is supported by theory instead of observation. Then, the other parameters are optimized according to the robust design specifications with respect to the parameter uncertainties. Therefore, the controlled system can tolerate different parameter uncertainties and fulfill transient performance specifications while maintaining system stability. The simulation results illustrate the superior robustness and transient performance of the proposed control algorithm. •A robust FOPID controller design method is presented for AUV yaw control system.•A three dimensional stability region analysis method is proposed to achieve the fractional orders.•The other parameters are optimized according to the robust design specifications.•The controlled system could tolerate different parameters uncertainties and fulfill design specifications.•Simulation results are given to illustrate the superior control performance of the proposed algorithm.
AbstractList Autonomous underwater vehicles (AUVs) have broad applications owing to their small size, low weight, strong ability to operate autonomously, and ability to replace humans in dangerous operations. AUV motion control systems can ensure stable operation in complex ocean environments and have attracted significant research attention in marine science and technology. The main difficulties with AUV motion control include the large uncertainties of dynamic and hydrodynamic characteristics and time delay of the signal transmission channel. In this study, we propose a robust fractional-order proportional–integral–derivative (FOPID) controller design for an AUV yaw control system. First, a three-dimensional stability region analysis method is proposed to achieve fractional orders. Unlike other stability region analysis methods, the proposed method is supported by theory instead of observation. Then, the other parameters are optimized according to the robust design specifications with respect to the parameter uncertainties. Therefore, the controlled system can tolerate different parameter uncertainties and fulfill transient performance specifications while maintaining system stability. The simulation results illustrate the superior robustness and transient performance of the proposed control algorithm. •A robust FOPID controller design method is presented for AUV yaw control system.•A three dimensional stability region analysis method is proposed to achieve the fractional orders.•The other parameters are optimized according to the robust design specifications.•The controlled system could tolerate different parameters uncertainties and fulfill design specifications.•Simulation results are given to illustrate the superior control performance of the proposed algorithm.
ArticleNumber 111493
Author Zhang, Shuo
Pan, Guang
Liu, Lu
Zhang, Lichuan
Author_xml – sequence: 1
  givenname: Lu
  surname: Liu
  fullname: Liu, Lu
  organization: Research&Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
– sequence: 2
  givenname: Lichuan
  surname: Zhang
  fullname: Zhang, Lichuan
  organization: Research&Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
– sequence: 3
  givenname: Guang
  surname: Pan
  fullname: Pan, Guang
  organization: Research&Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China
– sequence: 4
  givenname: Shuo
  surname: Zhang
  fullname: Zhang, Shuo
  email: zhangshuo1018@nwpu.edu.cn
  organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, 710072, China
BookMark eNqFkF1LwzAUhoNMcJv-BckfaM1H17TghTK_BoIieieEND3RjC6RJN3Yv7dj7sabXRwOB87zwvtM0Mh5BwhdUpJTQsurZe41KAfuK2eEsZxSWtT8BI1pJXg2Y7NqhMaEsDqrCK3O0CTGJSGkLAkfo8833_Qx4a3aYO1dCr7D3mDVJ-_8yvcR966FsFEJAl7Dt9Ud4EZFaLF32ASlk_VOdZkPwxt-XdwdYjoI5-jUqC7Cxd-eoo-H-_f5U_b88riY3z5nmhUsZS0VDalrVkPNGAUYpiqaWauMEZQUjTaiVYwPNydc6KGcMEwAqcqGN1Ur-BSV-1wdfIwBjPwJdqXCVlIid47kUh4cyZ0juXc0gNf_QG2T2jVKQdnuOH6zx2Eot7YQZNQWnIbWBtBJtt4ei_gFZ5mLLg
CitedBy_id crossref_primary_10_1016_j_engappai_2023_106207
crossref_primary_10_1016_j_asr_2022_08_053
crossref_primary_10_1007_s10409_022_22228_x
crossref_primary_10_1016_j_ast_2024_108901
crossref_primary_10_1016_j_oceaneng_2024_117560
crossref_primary_10_1038_s41598_025_14612_w
crossref_primary_10_3390_math10183319
crossref_primary_10_3390_fractalfract8060354
crossref_primary_10_1109_ACCESS_2025_3552464
crossref_primary_10_1016_j_ijmecsci_2023_108737
crossref_primary_10_1177_14750902251357638
crossref_primary_10_3390_jmse12010094
crossref_primary_10_1049_cth2_12534
crossref_primary_10_1007_s00521_023_08220_w
crossref_primary_10_1109_TCST_2024_3377876
crossref_primary_10_3390_fractalfract6100577
crossref_primary_10_1007_s42835_022_01225_w
crossref_primary_10_3390_jmse12040645
crossref_primary_10_1109_ACCESS_2023_3281397
crossref_primary_10_1016_j_ymssp_2024_112216
crossref_primary_10_3390_machines12070485
crossref_primary_10_1016_j_oceaneng_2024_118559
crossref_primary_10_3390_fractalfract8020122
crossref_primary_10_1007_s11370_025_00616_y
crossref_primary_10_3390_jmse12010185
crossref_primary_10_3390_fractalfract6090473
crossref_primary_10_3390_fractalfract6090519
crossref_primary_10_1007_s11071_025_11125_z
crossref_primary_10_1109_TCYB_2022_3225106
crossref_primary_10_3390_act13030103
crossref_primary_10_3390_sym14122640
crossref_primary_10_1016_j_prime_2023_100305
crossref_primary_10_1109_LRA_2025_3530115
crossref_primary_10_1007_s40430_023_04251_5
crossref_primary_10_1016_j_oceaneng_2023_115288
crossref_primary_10_3390_fractalfract6100601
crossref_primary_10_1177_1045389X221142083
crossref_primary_10_3390_fractalfract6060342
crossref_primary_10_1038_s41598_025_95519_4
crossref_primary_10_3390_robotics14040045
crossref_primary_10_1177_00405175221148258
crossref_primary_10_3390_math12010024
crossref_primary_10_3390_jmse11122294
crossref_primary_10_1016_j_ijmecsci_2022_107860
crossref_primary_10_3390_en15239074
crossref_primary_10_1007_s00707_022_03368_3
crossref_primary_10_3390_jmse13030490
crossref_primary_10_1016_j_oceaneng_2024_118805
crossref_primary_10_1016_j_cnsns_2023_107807
crossref_primary_10_3390_fractalfract9090580
crossref_primary_10_1016_j_oceaneng_2023_115735
crossref_primary_10_1016_j_oceaneng_2022_112644
crossref_primary_10_1016_j_cjph_2024_06_019
crossref_primary_10_1002_adc2_177
crossref_primary_10_1016_j_oceaneng_2024_117654
crossref_primary_10_1016_j_oceaneng_2023_116300
crossref_primary_10_3390_app14051750
crossref_primary_10_1016_j_oceaneng_2025_122650
crossref_primary_10_3390_jmse12081342
crossref_primary_10_3390_jmse10070955
crossref_primary_10_1155_2022_3569261
crossref_primary_10_3390_math13132124
Cites_doi 10.1016/j.automatica.2013.10.002
10.1016/j.oceaneng.2010.11.004
10.1515/fca-2020-0007
10.1049/iet-cta.2017.1145
10.1049/iet-cta.2020.0383
10.1016/j.oceaneng.2020.108214
10.1016/j.nahs.2014.10.001
10.1016/j.mechatronics.2017.05.004
10.1016/j.oceaneng.2020.107884
10.1109/OCEANS-Genova.2015.7271411
10.1016/j.oceaneng.2020.108480
10.1016/j.ifacol.2020.12.2047
10.1002/rnc.3677
10.1007/s12555-015-0210-0
10.1109/TAC.2007.906243
10.1016/j.oceaneng.2020.108257
10.1109/9.739144
10.1109/AICERA.2014.6908219
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2022.111493
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
ExternalDocumentID 10_1016_j_oceaneng_2022_111493
S0029801822008642
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
WUQ
~HD
ID FETCH-LOGICAL-c242t-d17b09929e9221ee21e84b5daff7104bcf7da23daf3037c4937f27e086b3b8d73
ISICitedReferencesCount 72
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812948400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-8018
IngestDate Sat Nov 29 07:28:51 EST 2025
Tue Nov 18 21:38:15 EST 2025
Fri Feb 23 02:39:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Autonomous underwater vehicle (AUV)
Stability analysis
Robustness
Time delay
Fractional calculus
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c242t-d17b09929e9221ee21e84b5daff7104bcf7da23daf3037c4937f27e086b3b8d73
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2022_111493
crossref_citationtrail_10_1016_j_oceaneng_2022_111493
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_111493
PublicationCentury 2000
PublicationDate 2022-08-01
2022-08-00
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Campos, Chemori, Creuze, Torres, Lozano (b3) 2017; 45
Munoz-Vazquez, Ramirez-Rodriguez, Parra-Vega, Sanchez-Orta (b12) 2017; 15
Zhang, Liu, Xue (b26) 2020; 377
Kinaci, Bayezit, Reyhanoglu (b8) 2020; 218
Feliu-Batlle, Castillo-García (b5) 2014; 50
Zhang, Liu, Chen, Xue (b25) 2020; 14
Yu, Sun, Dai (b24) 2021; 68
Liu, Xue, Zhang (b9) 2021
Perez, Fossen (b13) 2011; 38
Rui (b16) 2015
Zhang, Liu, Xue, Chen (b27) 2020; 23
Yang, R., Probst, I., Mansours, A., 2015. Robust heading control and its application to CISCREA underwater vehicle. In: Proceedings of IEEE Oceans Conference. pp. 1–6, (2015).
Borlaug, Petternsen, Gravdahl (b2) 2021; 222
Ajmal, M.S., Labeeb, M., Dev, D.V., 2014. Fractional order PID controller for depth control of autonomous underwater vehicle using frequency response shaping approach. In: Proceedings of international conference on emerging research areas: magnetics. pp. 24–26, (2014).
Liu, Zhang, Zhang, Pan, Bai (b11) 2022; 29
Rui, Clement, Mansour, Ming, Wu (b17) 2015; 80
Tran, Pham, Choi (b18) 2021; 220
Xiang, Yu, Lapierre, Zhang, Qin (b21) 2017; 20
Yan, Gong, Zhang, W.H. (b22) 2020; 217
Zhang, Yu, Wang (b28) 2015; 16
Feliu-Batlle (b4) 2017; 27
Wang, J., 2012. Research on motion control of underwater vehicle. In: Proceedings of Chinese Control and Decision Conference. pp. 1–6, (2012).
Hamamci (b7) 2008; 51
Liu, Zhang, Xue, Chen (b10) 2018; 12
Podlubny (b15) 1999; 44
Hamamci (b6) 2007; 52
Wu, Z., Chen, Y.Q., Viola, J., Luo, Y., Chen, Y., 2020. Fractional order [proportional integral derivative] controller design with specification constraints: More Flat Phase Idea. In: Proceedings of 21st IFAC World Congress on Automatic Control. pp. 3650–3656, (2020).
Podlubny (b14) 1998
Zhang (10.1016/j.oceaneng.2022.111493_b27) 2020; 23
10.1016/j.oceaneng.2022.111493_b1
Feliu-Batlle (10.1016/j.oceaneng.2022.111493_b5) 2014; 50
Perez (10.1016/j.oceaneng.2022.111493_b13) 2011; 38
Yan (10.1016/j.oceaneng.2022.111493_b22) 2020; 217
Zhang (10.1016/j.oceaneng.2022.111493_b26) 2020; 377
Yu (10.1016/j.oceaneng.2022.111493_b24) 2021; 68
10.1016/j.oceaneng.2022.111493_b19
Podlubny (10.1016/j.oceaneng.2022.111493_b14) 1998
Zhang (10.1016/j.oceaneng.2022.111493_b28) 2015; 16
Hamamci (10.1016/j.oceaneng.2022.111493_b7) 2008; 51
Campos (10.1016/j.oceaneng.2022.111493_b3) 2017; 45
Liu (10.1016/j.oceaneng.2022.111493_b10) 2018; 12
Podlubny (10.1016/j.oceaneng.2022.111493_b15) 1999; 44
Liu (10.1016/j.oceaneng.2022.111493_b11) 2022; 29
Rui (10.1016/j.oceaneng.2022.111493_b17) 2015; 80
Borlaug (10.1016/j.oceaneng.2022.111493_b2) 2021; 222
Xiang (10.1016/j.oceaneng.2022.111493_b21) 2017; 20
Feliu-Batlle (10.1016/j.oceaneng.2022.111493_b4) 2017; 27
Tran (10.1016/j.oceaneng.2022.111493_b18) 2021; 220
Hamamci (10.1016/j.oceaneng.2022.111493_b6) 2007; 52
Munoz-Vazquez (10.1016/j.oceaneng.2022.111493_b12) 2017; 15
Kinaci (10.1016/j.oceaneng.2022.111493_b8) 2020; 218
Rui (10.1016/j.oceaneng.2022.111493_b16) 2015
10.1016/j.oceaneng.2022.111493_b23
10.1016/j.oceaneng.2022.111493_b20
Liu (10.1016/j.oceaneng.2022.111493_b9) 2021
Zhang (10.1016/j.oceaneng.2022.111493_b25) 2020; 14
References_xml – volume: 51
  start-page: 329
  year: 2008
  end-page: 343
  ident: b7
  article-title: Stabilization using fractional-order PI and PID controllers
  publication-title: Nonlinear Dynam.
– volume: 52
  start-page: 1964
  year: 2007
  end-page: 1969
  ident: b6
  article-title: An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers
  publication-title: IEEE Trans. Automat. Control
– volume: 68
  start-page: 3241
  year: 2021
  end-page: 3245
  ident: b24
  article-title: Stability analysis of a class of fractional-order nonlinear systems under unknown stochastic disturbance and actuator saturation
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– volume: 12
  start-page: 1730
  year: 2018
  end-page: 1736
  ident: b10
  article-title: General robustness analysis and robust fractional-order PD controller design for fractional-order plants
  publication-title: IET Control Theory Appl.
– volume: 16
  start-page: 104
  year: 2015
  end-page: 121
  ident: b28
  article-title: Mittag-Leffler stability of fractional-order hopfield neural networks
  publication-title: Nonlinear Anal. Hybrid Syst.
– year: 2015
  ident: b16
  article-title: Modeling and Robust Control of Underwater Vehcile
– reference: Yang, R., Probst, I., Mansours, A., 2015. Robust heading control and its application to CISCREA underwater vehicle. In: Proceedings of IEEE Oceans Conference. pp. 1–6, (2015).
– reference: Ajmal, M.S., Labeeb, M., Dev, D.V., 2014. Fractional order PID controller for depth control of autonomous underwater vehicle using frequency response shaping approach. In: Proceedings of international conference on emerging research areas: magnetics. pp. 24–26, (2014).
– volume: 44
  start-page: 208
  year: 1999
  end-page: 214
  ident: b15
  article-title: Fractional-order systems and PI
  publication-title: IEEE Trans. Automat. Control
– volume: 15
  start-page: 1314
  year: 2017
  end-page: 1321
  ident: b12
  article-title: Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances
  publication-title: Int. J. Control Autom. Syst.
– volume: 23
  start-page: 183
  year: 2020
  end-page: 210
  ident: b27
  article-title: Stability and resonance analysis of a general non-commensurate elementary fractional-order system
  publication-title: Fract. Calc. Appl. Anal.
– volume: 220
  year: 2021
  ident: b18
  article-title: Robust depth control of a hybrid autonomous underwater vehicle with propeller torque’s effect and model uncertainty
  publication-title: Ocean Eng.
– volume: 27
  start-page: 2145
  year: 2017
  end-page: 2164
  ident: b4
  article-title: Robust isophase margin control of oscillatory systems with large uncertainties in their parameters: A fractional-order control approach
  publication-title: Int. J. Robust Nonlinear Control
– volume: 50
  start-page: 218
  year: 2014
  end-page: 224
  ident: b5
  article-title: On the robust control of stable minimum phase plants with large uncertainty in a time constant. a fractional-order control approach
  publication-title: Automatica
– reference: Wu, Z., Chen, Y.Q., Viola, J., Luo, Y., Chen, Y., 2020. Fractional order [proportional integral derivative] controller design with specification constraints: More Flat Phase Idea. In: Proceedings of 21st IFAC World Congress on Automatic Control. pp. 3650–3656, (2020).
– year: 2021
  ident: b9
  article-title: General type industrial temperature system control based on fuzzy fractional-order PID controller
  publication-title: Complex Intell. Syst.
– volume: 14
  start-page: 3723
  year: 2020
  end-page: 3730
  ident: b25
  article-title: Synthesised fractional-order PD controller design for fractional-order time-delay systems based on improved robust stability surface analysis
  publication-title: IET Control Theory Appl.
– volume: 45
  start-page: 49
  year: 2017
  end-page: 59
  ident: b3
  article-title: Saturation based nonlinear depth and yaw control of underwater vehicles with stability analysis and real-time experiments
  publication-title: Mechatronics
– reference: Wang, J., 2012. Research on motion control of underwater vehicle. In: Proceedings of Chinese Control and Decision Conference. pp. 1–6, (2012).
– volume: 80
  start-page: 491
  year: 2015
  end-page: 506
  ident: b17
  article-title: Modeling of a complex-shaped underwater vehicle for robust control scheme
  publication-title: J. Intell. Robot. Syst.
– volume: 20
  start-page: 1
  year: 2017
  end-page: 15
  ident: b21
  article-title: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles
  publication-title: Int. J. Fuzzy Syst.
– volume: 29
  year: 2022
  ident: b11
  article-title: Multi-AUV dynamic maneuver decision-making based on fuzzy intuitionistic counter-game and fractional-order PSO
  publication-title: Fractals Complex Geom. Patterns Scalling Nat. Soc.
– volume: 217
  year: 2020
  ident: b22
  article-title: Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances
  publication-title: Ocean Eng.
– volume: 218
  year: 2020
  ident: b8
  article-title: A practical feedforward speed control system for autonomous underwater vehicles
  publication-title: Ocean Eng.
– year: 1998
  ident: b14
  article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Vol. 198
– volume: 38
  start-page: 426
  year: 2011
  end-page: 435
  ident: b13
  article-title: Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic data
  publication-title: Ocean Eng.
– volume: 222
  year: 2021
  ident: b2
  article-title: Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results
  publication-title: Ocean Eng.
– volume: 377
  year: 2020
  ident: b26
  article-title: Nyquist-based stability analysis of non-commensurate fractional-order delay systems
  publication-title: Appl. Math. Comput.
– volume: 50
  start-page: 218
  issue: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2022.111493_b5
  article-title: On the robust control of stable minimum phase plants with large uncertainty in a time constant. a fractional-order control approach
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.10.002
– volume: 80
  start-page: 491
  issue: 3–4
  year: 2015
  ident: 10.1016/j.oceaneng.2022.111493_b17
  article-title: Modeling of a complex-shaped underwater vehicle for robust control scheme
  publication-title: J. Intell. Robot. Syst.
– volume: 38
  start-page: 426
  issue: 2
  year: 2011
  ident: 10.1016/j.oceaneng.2022.111493_b13
  article-title: Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic data
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2010.11.004
– volume: 23
  start-page: 183
  issue: 1
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111493_b27
  article-title: Stability and resonance analysis of a general non-commensurate elementary fractional-order system
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2020-0007
– year: 1998
  ident: 10.1016/j.oceaneng.2022.111493_b14
– volume: 377
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111493_b26
  article-title: Nyquist-based stability analysis of non-commensurate fractional-order delay systems
  publication-title: Appl. Math. Comput.
– volume: 12
  start-page: 1730
  year: 2018
  ident: 10.1016/j.oceaneng.2022.111493_b10
  article-title: General robustness analysis and robust fractional-order PD controller design for fractional-order plants
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2017.1145
– year: 2021
  ident: 10.1016/j.oceaneng.2022.111493_b9
  article-title: General type industrial temperature system control based on fuzzy fractional-order PID controller
  publication-title: Complex Intell. Syst.
– year: 2015
  ident: 10.1016/j.oceaneng.2022.111493_b16
– volume: 14
  start-page: 3723
  issue: 20
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111493_b25
  article-title: Synthesised fractional-order PD controller design for fractional-order time-delay systems based on improved robust stability surface analysis
  publication-title: IET Control Theory Appl.
  doi: 10.1049/iet-cta.2020.0383
– volume: 218
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111493_b8
  article-title: A practical feedforward speed control system for autonomous underwater vehicles
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108214
– volume: 16
  start-page: 104
  year: 2015
  ident: 10.1016/j.oceaneng.2022.111493_b28
  article-title: Mittag-Leffler stability of fractional-order hopfield neural networks
  publication-title: Nonlinear Anal. Hybrid Syst.
  doi: 10.1016/j.nahs.2014.10.001
– volume: 45
  start-page: 49
  year: 2017
  ident: 10.1016/j.oceaneng.2022.111493_b3
  article-title: Saturation based nonlinear depth and yaw control of underwater vehicles with stability analysis and real-time experiments
  publication-title: Mechatronics
  doi: 10.1016/j.mechatronics.2017.05.004
– volume: 217
  year: 2020
  ident: 10.1016/j.oceaneng.2022.111493_b22
  article-title: Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107884
– ident: 10.1016/j.oceaneng.2022.111493_b23
  doi: 10.1109/OCEANS-Genova.2015.7271411
– volume: 222
  year: 2021
  ident: 10.1016/j.oceaneng.2022.111493_b2
  article-title: Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108480
– ident: 10.1016/j.oceaneng.2022.111493_b20
  doi: 10.1016/j.ifacol.2020.12.2047
– volume: 68
  start-page: 3241
  issue: 10
  year: 2021
  ident: 10.1016/j.oceaneng.2022.111493_b24
  article-title: Stability analysis of a class of fractional-order nonlinear systems under unknown stochastic disturbance and actuator saturation
  publication-title: IEEE Trans. Circuits Syst. II Express Briefs
– ident: 10.1016/j.oceaneng.2022.111493_b19
– volume: 29
  issue: 8
  year: 2022
  ident: 10.1016/j.oceaneng.2022.111493_b11
  article-title: Multi-AUV dynamic maneuver decision-making based on fuzzy intuitionistic counter-game and fractional-order PSO
  publication-title: Fractals Complex Geom. Patterns Scalling Nat. Soc.
– volume: 27
  start-page: 2145
  year: 2017
  ident: 10.1016/j.oceaneng.2022.111493_b4
  article-title: Robust isophase margin control of oscillatory systems with large uncertainties in their parameters: A fractional-order control approach
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.3677
– volume: 20
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.oceaneng.2022.111493_b21
  article-title: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles
  publication-title: Int. J. Fuzzy Syst.
– volume: 15
  start-page: 1314
  issue: 3
  year: 2017
  ident: 10.1016/j.oceaneng.2022.111493_b12
  article-title: Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-015-0210-0
– volume: 52
  start-page: 1964
  issue: 10
  year: 2007
  ident: 10.1016/j.oceaneng.2022.111493_b6
  article-title: An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/TAC.2007.906243
– volume: 51
  start-page: 329
  issue: 1–2
  year: 2008
  ident: 10.1016/j.oceaneng.2022.111493_b7
  article-title: Stabilization using fractional-order PI and PID controllers
  publication-title: Nonlinear Dynam.
– volume: 220
  year: 2021
  ident: 10.1016/j.oceaneng.2022.111493_b18
  article-title: Robust depth control of a hybrid autonomous underwater vehicle with propeller torque’s effect and model uncertainty
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108257
– volume: 44
  start-page: 208
  issue: 1
  year: 1999
  ident: 10.1016/j.oceaneng.2022.111493_b15
  article-title: Fractional-order systems and PIλDμ-controllers
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.739144
– ident: 10.1016/j.oceaneng.2022.111493_b1
  doi: 10.1109/AICERA.2014.6908219
SSID ssj0006603
Score 2.5665524
Snippet Autonomous underwater vehicles (AUVs) have broad applications owing to their small size, low weight, strong ability to operate autonomously, and ability to...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111493
SubjectTerms Autonomous underwater vehicle (AUV)
Fractional calculus
Robustness
Stability analysis
Time delay
Title Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller
URI https://dx.doi.org/10.1016/j.oceaneng.2022.111493
Volume 257
WOSCitedRecordID wos000812948400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5258
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006603
  issn: 0029-8018
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELeg4wGQEAwmxpf8wFuVQZ0Px48TDDE0jQqG1AekKHZstVOVTG2yjf-eu9iOq23SQIiHRk2ki2XfL_bd-e5nQt72YYU0gw-JlzJKeFVFYFXHEdjiKazHqmKq55k94sfH-Wwmpm6jfd0fJ8DrOr-8FGf_VdXwDJSNpbN_oe7hpfAA_oPS4Qpqh-sfKf5bI7t1O_5VXgx56LjX37VYvoAJr1g2trookR3xXM9RfIxrWYX7BmZlCx3KZdSTco6nhx_9a5YukdeZsl8VBvF14DMccnsWXe_td9eC0kcLNe8CHKc2-AooDcIhgD3vms2QBHizPiHOxcl8rUxITLJ1AwLXQzvbajvd5jwGV9iSt_v5mFnG6mtzuw0znO412D3o3R42jVN-Ys9YvMKb_b1nl4f2GKZ4gJt1l2wxnop8RLb2Dw9mX4YFO8vexz4TCAU2Cslvbu1mG2bDLjl5TB45h4LuWyA8IXd0vU0ebNBMbpOHvaocN_lT8tMihAJCqFMtbQwNCKEBIdQhhPYIoU1NryKEAkJoQMgz8uPTwcmHz5E7ZCNSYJ21UTXhErwEJrRgbKI1_PJEplVpDBifiVSGVyWL4R6MHa6g99wwrmFEZSzzisc7ZFQ3tX5OaKq1ySexZLi5GxteiolIEp6VGZfMVGqXpH7YCuUY6PEglGXhUw1PCz_cBQ53YYd7l7wb5M4sB8utEsJrpXCWpLUQCwDTLbIv_kH2JbkfvodXZNSuOv2a3FPn7WK9euNw9xvG2Jy3
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+yaw+control+of+autonomous+underwater+vehicle+based+on+fractional-order+PID+controller&rft.jtitle=Ocean+engineering&rft.au=Liu%2C+Lu&rft.au=Zhang%2C+Lichuan&rft.au=Pan%2C+Guang&rft.au=Zhang%2C+Shuo&rft.date=2022-08-01&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.eissn=1873-5258&rft.volume=257&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.111493&rft.externalDocID=S0029801822008642
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon