Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller
Autonomous underwater vehicles (AUVs) have broad applications owing to their small size, low weight, strong ability to operate autonomously, and ability to replace humans in dangerous operations. AUV motion control systems can ensure stable operation in complex ocean environments and have attracted...
Uloženo v:
| Vydáno v: | Ocean engineering Ročník 257; s. 111493 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.08.2022
|
| Témata: | |
| ISSN: | 0029-8018, 1873-5258 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Autonomous underwater vehicles (AUVs) have broad applications owing to their small size, low weight, strong ability to operate autonomously, and ability to replace humans in dangerous operations. AUV motion control systems can ensure stable operation in complex ocean environments and have attracted significant research attention in marine science and technology. The main difficulties with AUV motion control include the large uncertainties of dynamic and hydrodynamic characteristics and time delay of the signal transmission channel. In this study, we propose a robust fractional-order proportional–integral–derivative (FOPID) controller design for an AUV yaw control system. First, a three-dimensional stability region analysis method is proposed to achieve fractional orders. Unlike other stability region analysis methods, the proposed method is supported by theory instead of observation. Then, the other parameters are optimized according to the robust design specifications with respect to the parameter uncertainties. Therefore, the controlled system can tolerate different parameter uncertainties and fulfill transient performance specifications while maintaining system stability. The simulation results illustrate the superior robustness and transient performance of the proposed control algorithm.
•A robust FOPID controller design method is presented for AUV yaw control system.•A three dimensional stability region analysis method is proposed to achieve the fractional orders.•The other parameters are optimized according to the robust design specifications.•The controlled system could tolerate different parameters uncertainties and fulfill design specifications.•Simulation results are given to illustrate the superior control performance of the proposed algorithm. |
|---|---|
| AbstractList | Autonomous underwater vehicles (AUVs) have broad applications owing to their small size, low weight, strong ability to operate autonomously, and ability to replace humans in dangerous operations. AUV motion control systems can ensure stable operation in complex ocean environments and have attracted significant research attention in marine science and technology. The main difficulties with AUV motion control include the large uncertainties of dynamic and hydrodynamic characteristics and time delay of the signal transmission channel. In this study, we propose a robust fractional-order proportional–integral–derivative (FOPID) controller design for an AUV yaw control system. First, a three-dimensional stability region analysis method is proposed to achieve fractional orders. Unlike other stability region analysis methods, the proposed method is supported by theory instead of observation. Then, the other parameters are optimized according to the robust design specifications with respect to the parameter uncertainties. Therefore, the controlled system can tolerate different parameter uncertainties and fulfill transient performance specifications while maintaining system stability. The simulation results illustrate the superior robustness and transient performance of the proposed control algorithm.
•A robust FOPID controller design method is presented for AUV yaw control system.•A three dimensional stability region analysis method is proposed to achieve the fractional orders.•The other parameters are optimized according to the robust design specifications.•The controlled system could tolerate different parameters uncertainties and fulfill design specifications.•Simulation results are given to illustrate the superior control performance of the proposed algorithm. |
| ArticleNumber | 111493 |
| Author | Zhang, Shuo Pan, Guang Liu, Lu Zhang, Lichuan |
| Author_xml | – sequence: 1 givenname: Lu surname: Liu fullname: Liu, Lu organization: Research&Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China – sequence: 2 givenname: Lichuan surname: Zhang fullname: Zhang, Lichuan organization: Research&Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China – sequence: 3 givenname: Guang surname: Pan fullname: Pan, Guang organization: Research&Development Institute of Northwestern Polytechnical University, Shenzhen, 518057, China – sequence: 4 givenname: Shuo surname: Zhang fullname: Zhang, Shuo email: zhangshuo1018@nwpu.edu.cn organization: School of Mathematics and Statistics, Northwestern Polytechnical University, Xi’an, 710072, China |
| BookMark | eNqFkF1LwzAUhoNMcJv-BckfaM1H17TghTK_BoIieieEND3RjC6RJN3Yv7dj7sabXRwOB87zwvtM0Mh5BwhdUpJTQsurZe41KAfuK2eEsZxSWtT8BI1pJXg2Y7NqhMaEsDqrCK3O0CTGJSGkLAkfo8833_Qx4a3aYO1dCr7D3mDVJ-_8yvcR966FsFEJAl7Dt9Ud4EZFaLF32ASlk_VOdZkPwxt-XdwdYjoI5-jUqC7Cxd-eoo-H-_f5U_b88riY3z5nmhUsZS0VDalrVkPNGAUYpiqaWauMEZQUjTaiVYwPNydc6KGcMEwAqcqGN1Ur-BSV-1wdfIwBjPwJdqXCVlIid47kUh4cyZ0juXc0gNf_QG2T2jVKQdnuOH6zx2Eot7YQZNQWnIbWBtBJtt4ei_gFZ5mLLg |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2023_106207 crossref_primary_10_1016_j_asr_2022_08_053 crossref_primary_10_1007_s10409_022_22228_x crossref_primary_10_1016_j_ast_2024_108901 crossref_primary_10_1016_j_oceaneng_2024_117560 crossref_primary_10_1038_s41598_025_14612_w crossref_primary_10_3390_math10183319 crossref_primary_10_3390_fractalfract8060354 crossref_primary_10_1109_ACCESS_2025_3552464 crossref_primary_10_1016_j_ijmecsci_2023_108737 crossref_primary_10_1177_14750902251357638 crossref_primary_10_3390_jmse12010094 crossref_primary_10_1049_cth2_12534 crossref_primary_10_1007_s00521_023_08220_w crossref_primary_10_1109_TCST_2024_3377876 crossref_primary_10_3390_fractalfract6100577 crossref_primary_10_1007_s42835_022_01225_w crossref_primary_10_3390_jmse12040645 crossref_primary_10_1109_ACCESS_2023_3281397 crossref_primary_10_1016_j_ymssp_2024_112216 crossref_primary_10_3390_machines12070485 crossref_primary_10_1016_j_oceaneng_2024_118559 crossref_primary_10_3390_fractalfract8020122 crossref_primary_10_1007_s11370_025_00616_y crossref_primary_10_3390_jmse12010185 crossref_primary_10_3390_fractalfract6090473 crossref_primary_10_3390_fractalfract6090519 crossref_primary_10_1007_s11071_025_11125_z crossref_primary_10_1109_TCYB_2022_3225106 crossref_primary_10_3390_act13030103 crossref_primary_10_3390_sym14122640 crossref_primary_10_1016_j_prime_2023_100305 crossref_primary_10_1109_LRA_2025_3530115 crossref_primary_10_1007_s40430_023_04251_5 crossref_primary_10_1016_j_oceaneng_2023_115288 crossref_primary_10_3390_fractalfract6100601 crossref_primary_10_1177_1045389X221142083 crossref_primary_10_3390_fractalfract6060342 crossref_primary_10_1038_s41598_025_95519_4 crossref_primary_10_3390_robotics14040045 crossref_primary_10_1177_00405175221148258 crossref_primary_10_3390_math12010024 crossref_primary_10_3390_jmse11122294 crossref_primary_10_1016_j_ijmecsci_2022_107860 crossref_primary_10_3390_en15239074 crossref_primary_10_1007_s00707_022_03368_3 crossref_primary_10_3390_jmse13030490 crossref_primary_10_1016_j_oceaneng_2024_118805 crossref_primary_10_1016_j_cnsns_2023_107807 crossref_primary_10_3390_fractalfract9090580 crossref_primary_10_1016_j_oceaneng_2023_115735 crossref_primary_10_1016_j_oceaneng_2022_112644 crossref_primary_10_1016_j_cjph_2024_06_019 crossref_primary_10_1002_adc2_177 crossref_primary_10_1016_j_oceaneng_2024_117654 crossref_primary_10_1016_j_oceaneng_2023_116300 crossref_primary_10_3390_app14051750 crossref_primary_10_1016_j_oceaneng_2025_122650 crossref_primary_10_3390_jmse12081342 crossref_primary_10_3390_jmse10070955 crossref_primary_10_1155_2022_3569261 crossref_primary_10_3390_math13132124 |
| Cites_doi | 10.1016/j.automatica.2013.10.002 10.1016/j.oceaneng.2010.11.004 10.1515/fca-2020-0007 10.1049/iet-cta.2017.1145 10.1049/iet-cta.2020.0383 10.1016/j.oceaneng.2020.108214 10.1016/j.nahs.2014.10.001 10.1016/j.mechatronics.2017.05.004 10.1016/j.oceaneng.2020.107884 10.1109/OCEANS-Genova.2015.7271411 10.1016/j.oceaneng.2020.108480 10.1016/j.ifacol.2020.12.2047 10.1002/rnc.3677 10.1007/s12555-015-0210-0 10.1109/TAC.2007.906243 10.1016/j.oceaneng.2020.108257 10.1109/9.739144 10.1109/AICERA.2014.6908219 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2022.111493 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| EISSN | 1873-5258 |
| ExternalDocumentID | 10_1016_j_oceaneng_2022_111493 S0029801822008642 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW WUQ ~HD |
| ID | FETCH-LOGICAL-c242t-d17b09929e9221ee21e84b5daff7104bcf7da23daf3037c4937f27e086b3b8d73 |
| ISICitedReferencesCount | 72 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812948400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-8018 |
| IngestDate | Sat Nov 29 07:28:51 EST 2025 Tue Nov 18 21:38:15 EST 2025 Fri Feb 23 02:39:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Autonomous underwater vehicle (AUV) Stability analysis Robustness Time delay Fractional calculus |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c242t-d17b09929e9221ee21e84b5daff7104bcf7da23daf3037c4937f27e086b3b8d73 |
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2022_111493 crossref_citationtrail_10_1016_j_oceaneng_2022_111493 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2022_111493 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-01 2022-08-00 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Campos, Chemori, Creuze, Torres, Lozano (b3) 2017; 45 Munoz-Vazquez, Ramirez-Rodriguez, Parra-Vega, Sanchez-Orta (b12) 2017; 15 Zhang, Liu, Xue (b26) 2020; 377 Kinaci, Bayezit, Reyhanoglu (b8) 2020; 218 Feliu-Batlle, Castillo-García (b5) 2014; 50 Zhang, Liu, Chen, Xue (b25) 2020; 14 Yu, Sun, Dai (b24) 2021; 68 Liu, Xue, Zhang (b9) 2021 Perez, Fossen (b13) 2011; 38 Rui (b16) 2015 Zhang, Liu, Xue, Chen (b27) 2020; 23 Yang, R., Probst, I., Mansours, A., 2015. Robust heading control and its application to CISCREA underwater vehicle. In: Proceedings of IEEE Oceans Conference. pp. 1–6, (2015). Borlaug, Petternsen, Gravdahl (b2) 2021; 222 Ajmal, M.S., Labeeb, M., Dev, D.V., 2014. Fractional order PID controller for depth control of autonomous underwater vehicle using frequency response shaping approach. In: Proceedings of international conference on emerging research areas: magnetics. pp. 24–26, (2014). Liu, Zhang, Zhang, Pan, Bai (b11) 2022; 29 Rui, Clement, Mansour, Ming, Wu (b17) 2015; 80 Tran, Pham, Choi (b18) 2021; 220 Xiang, Yu, Lapierre, Zhang, Qin (b21) 2017; 20 Yan, Gong, Zhang, W.H. (b22) 2020; 217 Zhang, Yu, Wang (b28) 2015; 16 Feliu-Batlle (b4) 2017; 27 Wang, J., 2012. Research on motion control of underwater vehicle. In: Proceedings of Chinese Control and Decision Conference. pp. 1–6, (2012). Hamamci (b7) 2008; 51 Liu, Zhang, Xue, Chen (b10) 2018; 12 Podlubny (b15) 1999; 44 Hamamci (b6) 2007; 52 Wu, Z., Chen, Y.Q., Viola, J., Luo, Y., Chen, Y., 2020. Fractional order [proportional integral derivative] controller design with specification constraints: More Flat Phase Idea. In: Proceedings of 21st IFAC World Congress on Automatic Control. pp. 3650–3656, (2020). Podlubny (b14) 1998 Zhang (10.1016/j.oceaneng.2022.111493_b27) 2020; 23 10.1016/j.oceaneng.2022.111493_b1 Feliu-Batlle (10.1016/j.oceaneng.2022.111493_b5) 2014; 50 Perez (10.1016/j.oceaneng.2022.111493_b13) 2011; 38 Yan (10.1016/j.oceaneng.2022.111493_b22) 2020; 217 Zhang (10.1016/j.oceaneng.2022.111493_b26) 2020; 377 Yu (10.1016/j.oceaneng.2022.111493_b24) 2021; 68 10.1016/j.oceaneng.2022.111493_b19 Podlubny (10.1016/j.oceaneng.2022.111493_b14) 1998 Zhang (10.1016/j.oceaneng.2022.111493_b28) 2015; 16 Hamamci (10.1016/j.oceaneng.2022.111493_b7) 2008; 51 Campos (10.1016/j.oceaneng.2022.111493_b3) 2017; 45 Liu (10.1016/j.oceaneng.2022.111493_b10) 2018; 12 Podlubny (10.1016/j.oceaneng.2022.111493_b15) 1999; 44 Liu (10.1016/j.oceaneng.2022.111493_b11) 2022; 29 Rui (10.1016/j.oceaneng.2022.111493_b17) 2015; 80 Borlaug (10.1016/j.oceaneng.2022.111493_b2) 2021; 222 Xiang (10.1016/j.oceaneng.2022.111493_b21) 2017; 20 Feliu-Batlle (10.1016/j.oceaneng.2022.111493_b4) 2017; 27 Tran (10.1016/j.oceaneng.2022.111493_b18) 2021; 220 Hamamci (10.1016/j.oceaneng.2022.111493_b6) 2007; 52 Munoz-Vazquez (10.1016/j.oceaneng.2022.111493_b12) 2017; 15 Kinaci (10.1016/j.oceaneng.2022.111493_b8) 2020; 218 Rui (10.1016/j.oceaneng.2022.111493_b16) 2015 10.1016/j.oceaneng.2022.111493_b23 10.1016/j.oceaneng.2022.111493_b20 Liu (10.1016/j.oceaneng.2022.111493_b9) 2021 Zhang (10.1016/j.oceaneng.2022.111493_b25) 2020; 14 |
| References_xml | – volume: 51 start-page: 329 year: 2008 end-page: 343 ident: b7 article-title: Stabilization using fractional-order PI and PID controllers publication-title: Nonlinear Dynam. – volume: 52 start-page: 1964 year: 2007 end-page: 1969 ident: b6 article-title: An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers publication-title: IEEE Trans. Automat. Control – volume: 68 start-page: 3241 year: 2021 end-page: 3245 ident: b24 article-title: Stability analysis of a class of fractional-order nonlinear systems under unknown stochastic disturbance and actuator saturation publication-title: IEEE Trans. Circuits Syst. II Express Briefs – volume: 12 start-page: 1730 year: 2018 end-page: 1736 ident: b10 article-title: General robustness analysis and robust fractional-order PD controller design for fractional-order plants publication-title: IET Control Theory Appl. – volume: 16 start-page: 104 year: 2015 end-page: 121 ident: b28 article-title: Mittag-Leffler stability of fractional-order hopfield neural networks publication-title: Nonlinear Anal. Hybrid Syst. – year: 2015 ident: b16 article-title: Modeling and Robust Control of Underwater Vehcile – reference: Yang, R., Probst, I., Mansours, A., 2015. Robust heading control and its application to CISCREA underwater vehicle. In: Proceedings of IEEE Oceans Conference. pp. 1–6, (2015). – reference: Ajmal, M.S., Labeeb, M., Dev, D.V., 2014. Fractional order PID controller for depth control of autonomous underwater vehicle using frequency response shaping approach. In: Proceedings of international conference on emerging research areas: magnetics. pp. 24–26, (2014). – volume: 44 start-page: 208 year: 1999 end-page: 214 ident: b15 article-title: Fractional-order systems and PI publication-title: IEEE Trans. Automat. Control – volume: 15 start-page: 1314 year: 2017 end-page: 1321 ident: b12 article-title: Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances publication-title: Int. J. Control Autom. Syst. – volume: 23 start-page: 183 year: 2020 end-page: 210 ident: b27 article-title: Stability and resonance analysis of a general non-commensurate elementary fractional-order system publication-title: Fract. Calc. Appl. Anal. – volume: 220 year: 2021 ident: b18 article-title: Robust depth control of a hybrid autonomous underwater vehicle with propeller torque’s effect and model uncertainty publication-title: Ocean Eng. – volume: 27 start-page: 2145 year: 2017 end-page: 2164 ident: b4 article-title: Robust isophase margin control of oscillatory systems with large uncertainties in their parameters: A fractional-order control approach publication-title: Int. J. Robust Nonlinear Control – volume: 50 start-page: 218 year: 2014 end-page: 224 ident: b5 article-title: On the robust control of stable minimum phase plants with large uncertainty in a time constant. a fractional-order control approach publication-title: Automatica – reference: Wu, Z., Chen, Y.Q., Viola, J., Luo, Y., Chen, Y., 2020. Fractional order [proportional integral derivative] controller design with specification constraints: More Flat Phase Idea. In: Proceedings of 21st IFAC World Congress on Automatic Control. pp. 3650–3656, (2020). – year: 2021 ident: b9 article-title: General type industrial temperature system control based on fuzzy fractional-order PID controller publication-title: Complex Intell. Syst. – volume: 14 start-page: 3723 year: 2020 end-page: 3730 ident: b25 article-title: Synthesised fractional-order PD controller design for fractional-order time-delay systems based on improved robust stability surface analysis publication-title: IET Control Theory Appl. – volume: 45 start-page: 49 year: 2017 end-page: 59 ident: b3 article-title: Saturation based nonlinear depth and yaw control of underwater vehicles with stability analysis and real-time experiments publication-title: Mechatronics – reference: Wang, J., 2012. Research on motion control of underwater vehicle. In: Proceedings of Chinese Control and Decision Conference. pp. 1–6, (2012). – volume: 80 start-page: 491 year: 2015 end-page: 506 ident: b17 article-title: Modeling of a complex-shaped underwater vehicle for robust control scheme publication-title: J. Intell. Robot. Syst. – volume: 20 start-page: 1 year: 2017 end-page: 15 ident: b21 article-title: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles publication-title: Int. J. Fuzzy Syst. – volume: 29 year: 2022 ident: b11 article-title: Multi-AUV dynamic maneuver decision-making based on fuzzy intuitionistic counter-game and fractional-order PSO publication-title: Fractals Complex Geom. Patterns Scalling Nat. Soc. – volume: 217 year: 2020 ident: b22 article-title: Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances publication-title: Ocean Eng. – volume: 218 year: 2020 ident: b8 article-title: A practical feedforward speed control system for autonomous underwater vehicles publication-title: Ocean Eng. – year: 1998 ident: b14 article-title: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of their Solution and Some of their Applications. Vol. 198 – volume: 38 start-page: 426 year: 2011 end-page: 435 ident: b13 article-title: Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic data publication-title: Ocean Eng. – volume: 222 year: 2021 ident: b2 article-title: Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results publication-title: Ocean Eng. – volume: 377 year: 2020 ident: b26 article-title: Nyquist-based stability analysis of non-commensurate fractional-order delay systems publication-title: Appl. Math. Comput. – volume: 50 start-page: 218 issue: 1 year: 2014 ident: 10.1016/j.oceaneng.2022.111493_b5 article-title: On the robust control of stable minimum phase plants with large uncertainty in a time constant. a fractional-order control approach publication-title: Automatica doi: 10.1016/j.automatica.2013.10.002 – volume: 80 start-page: 491 issue: 3–4 year: 2015 ident: 10.1016/j.oceaneng.2022.111493_b17 article-title: Modeling of a complex-shaped underwater vehicle for robust control scheme publication-title: J. Intell. Robot. Syst. – volume: 38 start-page: 426 issue: 2 year: 2011 ident: 10.1016/j.oceaneng.2022.111493_b13 article-title: Practical aspects of frequency-domain identification of dynamic models of marine structures from hydrodynamic data publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2010.11.004 – volume: 23 start-page: 183 issue: 1 year: 2020 ident: 10.1016/j.oceaneng.2022.111493_b27 article-title: Stability and resonance analysis of a general non-commensurate elementary fractional-order system publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2020-0007 – year: 1998 ident: 10.1016/j.oceaneng.2022.111493_b14 – volume: 377 year: 2020 ident: 10.1016/j.oceaneng.2022.111493_b26 article-title: Nyquist-based stability analysis of non-commensurate fractional-order delay systems publication-title: Appl. Math. Comput. – volume: 12 start-page: 1730 year: 2018 ident: 10.1016/j.oceaneng.2022.111493_b10 article-title: General robustness analysis and robust fractional-order PD controller design for fractional-order plants publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2017.1145 – year: 2021 ident: 10.1016/j.oceaneng.2022.111493_b9 article-title: General type industrial temperature system control based on fuzzy fractional-order PID controller publication-title: Complex Intell. Syst. – year: 2015 ident: 10.1016/j.oceaneng.2022.111493_b16 – volume: 14 start-page: 3723 issue: 20 year: 2020 ident: 10.1016/j.oceaneng.2022.111493_b25 article-title: Synthesised fractional-order PD controller design for fractional-order time-delay systems based on improved robust stability surface analysis publication-title: IET Control Theory Appl. doi: 10.1049/iet-cta.2020.0383 – volume: 218 year: 2020 ident: 10.1016/j.oceaneng.2022.111493_b8 article-title: A practical feedforward speed control system for autonomous underwater vehicles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108214 – volume: 16 start-page: 104 year: 2015 ident: 10.1016/j.oceaneng.2022.111493_b28 article-title: Mittag-Leffler stability of fractional-order hopfield neural networks publication-title: Nonlinear Anal. Hybrid Syst. doi: 10.1016/j.nahs.2014.10.001 – volume: 45 start-page: 49 year: 2017 ident: 10.1016/j.oceaneng.2022.111493_b3 article-title: Saturation based nonlinear depth and yaw control of underwater vehicles with stability analysis and real-time experiments publication-title: Mechatronics doi: 10.1016/j.mechatronics.2017.05.004 – volume: 217 year: 2020 ident: 10.1016/j.oceaneng.2022.111493_b22 article-title: Model predictive control of autonomous underwater vehicles for trajectory tracking with external disturbances publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107884 – ident: 10.1016/j.oceaneng.2022.111493_b23 doi: 10.1109/OCEANS-Genova.2015.7271411 – volume: 222 year: 2021 ident: 10.1016/j.oceaneng.2022.111493_b2 article-title: Comparison of two second-order sliding mode control algorithms for an articulated intervention AUV: Theory and experimental results publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108480 – ident: 10.1016/j.oceaneng.2022.111493_b20 doi: 10.1016/j.ifacol.2020.12.2047 – volume: 68 start-page: 3241 issue: 10 year: 2021 ident: 10.1016/j.oceaneng.2022.111493_b24 article-title: Stability analysis of a class of fractional-order nonlinear systems under unknown stochastic disturbance and actuator saturation publication-title: IEEE Trans. Circuits Syst. II Express Briefs – ident: 10.1016/j.oceaneng.2022.111493_b19 – volume: 29 issue: 8 year: 2022 ident: 10.1016/j.oceaneng.2022.111493_b11 article-title: Multi-AUV dynamic maneuver decision-making based on fuzzy intuitionistic counter-game and fractional-order PSO publication-title: Fractals Complex Geom. Patterns Scalling Nat. Soc. – volume: 27 start-page: 2145 year: 2017 ident: 10.1016/j.oceaneng.2022.111493_b4 article-title: Robust isophase margin control of oscillatory systems with large uncertainties in their parameters: A fractional-order control approach publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.3677 – volume: 20 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.oceaneng.2022.111493_b21 article-title: Survey on fuzzy-logic-based guidance and control of marine surface vehicles and underwater vehicles publication-title: Int. J. Fuzzy Syst. – volume: 15 start-page: 1314 issue: 3 year: 2017 ident: 10.1016/j.oceaneng.2022.111493_b12 article-title: Fractional sliding mode control of underwater ROVs subject to non-differentiable disturbances publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-015-0210-0 – volume: 52 start-page: 1964 issue: 10 year: 2007 ident: 10.1016/j.oceaneng.2022.111493_b6 article-title: An algorithm for stabilization of fractional-order time delay systems using fractional-order PID controllers publication-title: IEEE Trans. Automat. Control doi: 10.1109/TAC.2007.906243 – volume: 51 start-page: 329 issue: 1–2 year: 2008 ident: 10.1016/j.oceaneng.2022.111493_b7 article-title: Stabilization using fractional-order PI and PID controllers publication-title: Nonlinear Dynam. – volume: 220 year: 2021 ident: 10.1016/j.oceaneng.2022.111493_b18 article-title: Robust depth control of a hybrid autonomous underwater vehicle with propeller torque’s effect and model uncertainty publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108257 – volume: 44 start-page: 208 issue: 1 year: 1999 ident: 10.1016/j.oceaneng.2022.111493_b15 article-title: Fractional-order systems and PIλDμ-controllers publication-title: IEEE Trans. Automat. Control doi: 10.1109/9.739144 – ident: 10.1016/j.oceaneng.2022.111493_b1 doi: 10.1109/AICERA.2014.6908219 |
| SSID | ssj0006603 |
| Score | 2.5664897 |
| Snippet | Autonomous underwater vehicles (AUVs) have broad applications owing to their small size, low weight, strong ability to operate autonomously, and ability to... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 111493 |
| SubjectTerms | Autonomous underwater vehicle (AUV) Fractional calculus Robustness Stability analysis Time delay |
| Title | Robust yaw control of autonomous underwater vehicle based on fractional-order PID controller |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2022.111493 |
| Volume | 257 |
| WOSCitedRecordID | wos000812948400003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5258 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006603 issn: 0029-8018 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLeg4wBICAaI8SUfuFUprZ3WznGCIYbQqNCQekCK_Kl2qpKpTbbx3_McO3HYJsYOHBq1kZ4T9_1i_97L-0DoHTCGiRaKJ2OiLRgoTCcZlyaxVLPUwqM5I6JpNsGOjvhikc1D6NC2aSfAioJfXGSn_1XVcA6U7VJnb6HublA4Ad9B6XAEtcPxnxT_vZT1thr-EuddHLp7119XLn3BBby6tLHNuXDVEc_M0okP3V6m3XsDu_GJDmKdNEU5h_PDj-0w6xDIG6jsN-Wc-CbWM-xie1Z1Y-3XV5zSX1dqWUc4zr3zFVAahaMDe1mXfZcEWLNtQFxMEcjc1sf7yyzxhajDQglLbOpbI15Zw7074WRUumnALEbuEqMo8GfR7EubWRdi2EavneTtOLkbJ_fj3EU7hE0zPkA7-4cHiy_d5j2bjWkbFeRm0Esqv_6OruczPY5y_Bg9CsYF3vegeILumGIXPeiVnNxFDxu1hTrlT9FPjxYMaMFBzbi0OKIFR7TggBbcoAWXBb6MFgxowREtz9CPTwfHHz4noeFGooCpVYmeMAkWA8lMRsjEGPjwVE61sBaIaCqVZVoQCr-B-DAFs2eWMANWsaSSa0afo0FRFuYFwlQwKvTYAl0GhkupHCvD5SQ1M8O5InoPTdu_LVehGr1rirLO_664PfS-kzv19VhulMhareSBVXq2mAPgbpB9eeurvUL34xPxGg2qTW3eoHvqrFptN28D2n4D9AWeNA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+yaw+control+of+autonomous+underwater+vehicle+based+on+fractional-order+PID+controller&rft.jtitle=Ocean+engineering&rft.au=Liu%2C+Lu&rft.au=Zhang%2C+Lichuan&rft.au=Pan%2C+Guang&rft.au=Zhang%2C+Shuo&rft.date=2022-08-01&rft.issn=0029-8018&rft.volume=257&rft.spage=111493&rft_id=info:doi/10.1016%2Fj.oceaneng.2022.111493&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2022_111493 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |