A Solution to the Polynomial Hensel Code Conversion Problem

The polynomial Hensel code of a rational function a(x)/ b(x) ϵ F(x), F is a field, is the pair (c(x) d-1(x) mod Xr, n); r is a positive integer and a(x)/ b(x) = (c(x))xn such that c(x) and d(x) have nonzero constant terms. Such a representation scheme was proposed, in analogy with the Hensel code re...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers Vol. C-36; no. 5; pp. 634 - 637
Main Author: MUKHOPADHYAY, A
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.05.1987
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0018-9340, 1557-9956
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The polynomial Hensel code of a rational function a(x)/ b(x) ϵ F(x), F is a field, is the pair (c(x) d-1(x) mod Xr, n); r is a positive integer and a(x)/ b(x) = (c(x))xn such that c(x) and d(x) have nonzero constant terms. Such a representation scheme was proposed, in analogy with the Hensel code representations of rational numbers, to facilitate arithmetic operations on rational functions and control intermediate expressions well. The difficulty with this scheme was the conversion of such a code to rational function form. In this correspondence, we have given sufficient conditions under which this can be done and have described an algorithm for effecting the conversion. We have also discussed an application, namely, the reduction of a rational function to its simplest form.
ISSN:0018-9340
1557-9956
DOI:10.1109/TC.1987.1676950