A Solution to the Polynomial Hensel Code Conversion Problem
The polynomial Hensel code of a rational function a(x)/ b(x) ϵ F(x), F is a field, is the pair (c(x) d-1(x) mod Xr, n); r is a positive integer and a(x)/ b(x) = (c(x))xn such that c(x) and d(x) have nonzero constant terms. Such a representation scheme was proposed, in analogy with the Hensel code re...
Uloženo v:
| Vydáno v: | IEEE transactions on computers Ročník C-36; číslo 5; s. 634 - 637 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York, NY
IEEE
01.05.1987
Institute of Electrical and Electronics Engineers |
| Témata: | |
| ISSN: | 0018-9340, 1557-9956 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The polynomial Hensel code of a rational function a(x)/ b(x) ϵ F(x), F is a field, is the pair (c(x) d-1(x) mod Xr, n); r is a positive integer and a(x)/ b(x) = (c(x))xn such that c(x) and d(x) have nonzero constant terms. Such a representation scheme was proposed, in analogy with the Hensel code representations of rational numbers, to facilitate arithmetic operations on rational functions and control intermediate expressions well. The difficulty with this scheme was the conversion of such a code to rational function form. In this correspondence, we have given sufficient conditions under which this can be done and have described an algorithm for effecting the conversion. We have also discussed an application, namely, the reduction of a rational function to its simplest form. |
|---|---|
| ISSN: | 0018-9340 1557-9956 |
| DOI: | 10.1109/TC.1987.1676950 |