FA-SconvAE-LSTM: Feature-Aligned Stacked Convolutional Autoencoder with Long Short-Term Memory Network for Soft Sensor Modeling

The advancement of soft sensor technology has enabled the real-time estimation of critical parameters in complex industrial processes, where direct measurement through hardware sensors is often infeasible. Industrial process data typically exhibit both spatial correlations and temporal dependencies,...

Full description

Saved in:
Bibliographic Details
Published in:Engineering applications of artificial intelligence Vol. 150; p. 110535
Main Authors: Wu, Ping, Miao, Zengdi, Wang, Ke, Gao, Jinfeng, Zhang, Xujie, Lou, Siwei, Yang, Chunjie
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.06.2025
Subjects:
ISSN:0952-1976
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The advancement of soft sensor technology has enabled the real-time estimation of critical parameters in complex industrial processes, where direct measurement through hardware sensors is often infeasible. Industrial process data typically exhibit both spatial correlations and temporal dependencies, necessitating sophisticated modeling approaches to capture these characteristics effectively. In this study, a spatio-temporal model, termed the feature-aligned stacked convolutional autoencoder with long short-term memory, is proposed to develop soft sensors for nonlinear dynamic industrial processes. The proposed model begins with the systematic training of a stacked convolutional autoencoder using a layer-by-layer pre-training technique. This approach facilitates the extraction of high-level spatial feature representations from the process variables. To address the issue of feature misalignment in the spatial features extracted by the stacked convolutional autoencoder, a feature alignment strategy is implemented, ensuring that the extracted spatial features are properly aligned. Subsequently, the aligned spatial features are fed into a long short-term memory network to capture temporal dependencies, with quality variables serving as the output for soft sensor development. The effectiveness and superiority of the proposed method are demonstrated through experiments conducted on two industrial processes: the sulfur recovery unit and the multiphase flow process. Comparative analyses with other state-of-the-art methods reveal that the proposed model achieves the highest performance, with R2 values of 0.86222 for the sulfur recovery unit and 0.94307 for the multiphase flow process, outperforming all compared methods. [Display omitted] •A feature alignment strategy is developed to align spatial features from the stacked convolutional autoencoder, preserving temporal consistency.•A spatio-temporal model integrating a feature-aligned stacked convolutional autoencoder and LSTM is developed for soft sensors, simultaneously capturing spatial and temporal dependencies in industrial processes.•The proposed method’s effectiveness and superiority are demonstrated through comprehensive experiments on the sulfur recovery unit and multiphase flow process.
AbstractList The advancement of soft sensor technology has enabled the real-time estimation of critical parameters in complex industrial processes, where direct measurement through hardware sensors is often infeasible. Industrial process data typically exhibit both spatial correlations and temporal dependencies, necessitating sophisticated modeling approaches to capture these characteristics effectively. In this study, a spatio-temporal model, termed the feature-aligned stacked convolutional autoencoder with long short-term memory, is proposed to develop soft sensors for nonlinear dynamic industrial processes. The proposed model begins with the systematic training of a stacked convolutional autoencoder using a layer-by-layer pre-training technique. This approach facilitates the extraction of high-level spatial feature representations from the process variables. To address the issue of feature misalignment in the spatial features extracted by the stacked convolutional autoencoder, a feature alignment strategy is implemented, ensuring that the extracted spatial features are properly aligned. Subsequently, the aligned spatial features are fed into a long short-term memory network to capture temporal dependencies, with quality variables serving as the output for soft sensor development. The effectiveness and superiority of the proposed method are demonstrated through experiments conducted on two industrial processes: the sulfur recovery unit and the multiphase flow process. Comparative analyses with other state-of-the-art methods reveal that the proposed model achieves the highest performance, with R2 values of 0.86222 for the sulfur recovery unit and 0.94307 for the multiphase flow process, outperforming all compared methods. [Display omitted] •A feature alignment strategy is developed to align spatial features from the stacked convolutional autoencoder, preserving temporal consistency.•A spatio-temporal model integrating a feature-aligned stacked convolutional autoencoder and LSTM is developed for soft sensors, simultaneously capturing spatial and temporal dependencies in industrial processes.•The proposed method’s effectiveness and superiority are demonstrated through comprehensive experiments on the sulfur recovery unit and multiphase flow process.
ArticleNumber 110535
Author Zhang, Xujie
Wang, Ke
Yang, Chunjie
Wu, Ping
Miao, Zengdi
Gao, Jinfeng
Lou, Siwei
Author_xml – sequence: 1
  givenname: Ping
  orcidid: 0000-0002-2729-9669
  surname: Wu
  fullname: Wu, Ping
  email: pingwu@zstu.edu.cn
  organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 2
  givenname: Zengdi
  orcidid: 0009-0008-5343-4802
  surname: Miao
  fullname: Miao, Zengdi
  organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 3
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 4
  givenname: Jinfeng
  surname: Gao
  fullname: Gao, Jinfeng
  organization: School of Information Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, China
– sequence: 5
  givenname: Xujie
  surname: Zhang
  fullname: Zhang, Xujie
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 6
  givenname: Siwei
  surname: Lou
  fullname: Lou, Siwei
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
– sequence: 7
  givenname: Chunjie
  surname: Yang
  fullname: Yang, Chunjie
  organization: College of Control Science and Engineering, Zhejiang University, Hangzhou, China
BookMark eNqFkLFuwjAURT1QqUD7C5V_INSOE5NUHRohaCuFdgidLeO8BEOwkWNATP31BtEuXZjuG9650j0D1DPWAEIPlIwoofxxPQJTy91O6lFIwnhEKYlZ3EN9ksZhQNMxv0WDtl0TQlgS8T76nmVBoaw5ZNMgLxbzJzwD6fcOgqzRtYESF16qTZeT7sk2e6-tkQ3O9t6CUbYEh4_ar3BuTY2LlXU-WIDb4jlsrTvhD_BH6za4sg4XtvK4ANN297wjG23qO3RTyaaF-98coq_ZdDF5C_LP1_dJlgcqjEIfKFqloMYhU6ribFlSxijnEIJMUkVIWkY8rngiI7KsZMrimEEESUQZVTEwDmyIni-9ytm2dVAJpb08j_FO6kZQIs4CxVr8CRRngeIisMP5P3zn9Fa603Xw5QJCN-6gwYlW6U4clNqB8qK0-lrFD6tjlGM
CitedBy_id crossref_primary_10_1016_j_compchemeng_2025_109328
crossref_primary_10_1016_j_knosys_2025_114500
Cites_doi 10.1016/j.engappai.2023.106847
10.1016/j.asoc.2024.111974
10.1016/j.engappai.2023.106149
10.1109/TIM.2022.3152856
10.1016/j.conengprac.2020.104614
10.1109/TNNLS.2021.3085869
10.1016/j.compchemeng.2008.12.012
10.1016/S0967-0661(03)00079-0
10.1109/JSEN.2020.3033153
10.1109/TII.2018.2869899
10.3390/info15090517
10.1109/TIE.2020.2984443
10.1007/s10462-023-10678-y
10.1016/j.conengprac.2022.105292
10.7717/peerj-cs.623
10.1109/TIM.2021.3118090
10.1016/j.eswa.2009.08.008
10.1016/j.chemolab.2015.12.011
10.1109/TII.2019.2902129
10.1109/TIM.2020.2985614
10.1021/acs.iecr.9b02513
10.1109/TII.2020.3025204
10.1109/TII.2021.3053128
10.1109/TII.2009.2025124
10.1016/j.engappai.2022.105737
10.1109/TNNLS.2021.3084827
10.1016/j.measurement.2023.113491
10.1162/neco_a_01199
10.1162/neco.1997.9.8.1735
10.1038/nature14539
10.1109/ACCESS.2024.3440631
10.1016/j.jnca.2024.104048
10.1016/j.jprocont.2014.01.012
10.1016/j.knosys.2024.112026
10.1016/j.conengprac.2015.04.012
10.1109/TII.2022.3183211
10.1080/00031305.1989.10475612
10.1021/ie4041252
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.110535
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_110535
S0952197625005354
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c242t-c1f9ec723ccf63bd133166e2ea89c009d465f68a40bfa93553e4e84131c5e36e3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001449933100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Sat Nov 29 06:58:01 EST 2025
Tue Nov 18 22:43:12 EST 2025
Sat Sep 06 17:18:16 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Spatiotemporal feature extraction
Soft sensor
Stacked convolutional autoencoder
Feature alignment
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c242t-c1f9ec723ccf63bd133166e2ea89c009d465f68a40bfa93553e4e84131c5e36e3
ORCID 0009-0008-5343-4802
0000-0002-2729-9669
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2025_110535
crossref_primary_10_1016_j_engappai_2025_110535
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_110535
PublicationCentury 2000
PublicationDate 2025-06-15
PublicationDateYYYYMMDD 2025-06-15
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Vaswani (b34) 2017
Plevris, Solorzano, Bakas, Ben Seghier (b24) 2022
Yuan, Ge, Song (b42) 2014; 53
Hochreiter, Schmidhuber (b9) 1997; 9
Yuan, Qi, Wang (b45) 2020; 69
Kadlec, Gabrys, Strandt (b13) 2009; 33
Yuan, Li, Shardt, Wang, Yang (b43) 2020; 68
Tian, Zhu, He (b32) 2023
Mizdrakovic, Kljajic, Zivkovic, Bacanin, Jovanovic, Deveci, Pedrycz (b22) 2024
Liu, Zhou, Xu, Mei (b18) 2010; 37
Lui, Liu, Xie (b19) 2022; 71
Yuan, Qi, Wang, Xia (b46) 2020; 104
Liu, Wang, Wang, Xie, Yang (b17) 2021; 70
Shao, Han, Li, Ge, Zhao (b28) 2022; 127
Ullah, Ahsan, Hasanat, Haris, Yousaf, Raza, Tandon, Abid, Ullah (b33) 2024
Yuan, Li, Wang (b44) 2019; 16
Dey, Salem (b4) 2017
Wang, Liu, Srinivasan (b35) 2009; 6
Ruiz-Cárcel, Cao, Mba, Lao, Samuel (b26) 2015; 42
Yao, Shen, Cui, Zheng, Ge (b40) 2022; 19
Fortuna, Graziani, Rizzo, Xibilia (b5) 2007
Bono, Radicioni, Cinquemani (b1) 2023; 122
Mienye, Swart, Obaido (b21) 2024; 15
Li, Peng, Sun, Ji, Wang, Tao, Zhang, Nazir (b16) 2023
Zhou, Yang, Wang, Cao (b49) 2023; 126
Chicco, Warrens, Jurman (b3) 2021; 7
Shang, Yang, Huang, Lyu (b27) 2014; 24
Chai, Zhao, Huang, Chen (b2) 2021; 33
Zhou, Wang, Hu, Zhu, Zhang, Kong, Zhou, Wu, Cui (b48) 2024
Jiang, Ge (b10) 2021; 70
Pavlov-Kagadejev, Jovanovic, Bacanin, Deveci, Zivkovic, Tuba, Strumberger, Pedrycz (b23) 2024; 57
LeCun, Bengio, Hinton (b14) 2015; 521
Yu, Si, Hu, Zhang (b41) 2019; 31
Li, Liu, Yang, Peng, Zhou (b15) 2021; 33
Wang, Shang, Liu, Jiang, Huang, Yang (b37) 2019; 58
Xie, Wang, Xing, Guo, Guo, Zhu (b39) 2020; 17
Rosipal, Trejo (b25) 2001; 2
Sun, Ge (b31) 2021; 17
Wang, Qi, Zhang (b36) 2024; 164
Wang, Wang, Chen, Hao (b38) 2023; 221
Zheng, Liu, Liu, Hou, Yao, Zhou (b47) 2023
Fortuna, Rizzo, Sinatra, Xibilia (b6) 2003; 11
Jovanovic, Jovanovic, Zivkovic, Bacanin, Simic, Pamucar, Antonijevic (b12) 2025; 233
He, Li, Ma, Zhu, Lu (b8) 2023; 119
Frigge, Hoaglin, Iglewicz (b7) 1989; 43
Jiang, Yin, Dong, Kaynak (b11) 2020; 21
Souza, Araújo, Mendes (b29) 2016; 152
Sun, Ge (b30) 2018; 15
Meng, Liu, Yang, Zhou, Cheung (b20) 2023
Chicco (10.1016/j.engappai.2025.110535_b3) 2021; 7
Wang (10.1016/j.engappai.2025.110535_b38) 2023; 221
Ullah (10.1016/j.engappai.2025.110535_b33) 2024
Fortuna (10.1016/j.engappai.2025.110535_b6) 2003; 11
Zheng (10.1016/j.engappai.2025.110535_b47) 2023
Bono (10.1016/j.engappai.2025.110535_b1) 2023; 122
Frigge (10.1016/j.engappai.2025.110535_b7) 1989; 43
Yao (10.1016/j.engappai.2025.110535_b40) 2022; 19
Plevris (10.1016/j.engappai.2025.110535_b24) 2022
Lui (10.1016/j.engappai.2025.110535_b19) 2022; 71
Tian (10.1016/j.engappai.2025.110535_b32) 2023
Shang (10.1016/j.engappai.2025.110535_b27) 2014; 24
Xie (10.1016/j.engappai.2025.110535_b39) 2020; 17
Zhou (10.1016/j.engappai.2025.110535_b49) 2023; 126
Liu (10.1016/j.engappai.2025.110535_b17) 2021; 70
LeCun (10.1016/j.engappai.2025.110535_b14) 2015; 521
Yuan (10.1016/j.engappai.2025.110535_b43) 2020; 68
Vaswani (10.1016/j.engappai.2025.110535_b34) 2017
Wang (10.1016/j.engappai.2025.110535_b35) 2009; 6
Zhou (10.1016/j.engappai.2025.110535_b48) 2024
Mienye (10.1016/j.engappai.2025.110535_b21) 2024; 15
Shao (10.1016/j.engappai.2025.110535_b28) 2022; 127
Jovanovic (10.1016/j.engappai.2025.110535_b12) 2025; 233
Mizdrakovic (10.1016/j.engappai.2025.110535_b22) 2024
Yuan (10.1016/j.engappai.2025.110535_b45) 2020; 69
Rosipal (10.1016/j.engappai.2025.110535_b25) 2001; 2
He (10.1016/j.engappai.2025.110535_b8) 2023; 119
Li (10.1016/j.engappai.2025.110535_b15) 2021; 33
Chai (10.1016/j.engappai.2025.110535_b2) 2021; 33
Sun (10.1016/j.engappai.2025.110535_b30) 2018; 15
Ruiz-Cárcel (10.1016/j.engappai.2025.110535_b26) 2015; 42
Wang (10.1016/j.engappai.2025.110535_b36) 2024; 164
Fortuna (10.1016/j.engappai.2025.110535_b5) 2007
Yuan (10.1016/j.engappai.2025.110535_b42) 2014; 53
Dey (10.1016/j.engappai.2025.110535_b4) 2017
Meng (10.1016/j.engappai.2025.110535_b20) 2023
Wang (10.1016/j.engappai.2025.110535_b37) 2019; 58
Jiang (10.1016/j.engappai.2025.110535_b11) 2020; 21
Pavlov-Kagadejev (10.1016/j.engappai.2025.110535_b23) 2024; 57
Hochreiter (10.1016/j.engappai.2025.110535_b9) 1997; 9
Sun (10.1016/j.engappai.2025.110535_b31) 2021; 17
Liu (10.1016/j.engappai.2025.110535_b18) 2010; 37
Kadlec (10.1016/j.engappai.2025.110535_b13) 2009; 33
Yu (10.1016/j.engappai.2025.110535_b41) 2019; 31
Li (10.1016/j.engappai.2025.110535_b16) 2023
Souza (10.1016/j.engappai.2025.110535_b29) 2016; 152
Yuan (10.1016/j.engappai.2025.110535_b46) 2020; 104
Jiang (10.1016/j.engappai.2025.110535_b10) 2021; 70
Yuan (10.1016/j.engappai.2025.110535_b44) 2019; 16
References_xml – year: 2017
  ident: b34
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 68
  start-page: 4404
  year: 2020
  end-page: 4414
  ident: b43
  article-title: Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development
  publication-title: IEEE Trans. Ind. Electron.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: b17
  article-title: Deep nonlinear dynamic feature extraction for quality prediction based on spatiotemporal neighborhood preserving SAE
  publication-title: IEEE Trans. Instrum. Meas.
– start-page: 1597
  year: 2017
  end-page: 1600
  ident: b4
  article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks
  publication-title: 2017 IEEE 60th International Midwest Symposium on Circuits and Systems
– volume: 7
  year: 2021
  ident: b3
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput. Sci.
– volume: 164
  year: 2024
  ident: b36
  article-title: Deep learning with local spatiotemporal structure preserving for soft sensor development of complex industrial processes
  publication-title: Appl. Soft Comput.
– volume: 21
  start-page: 12868
  year: 2020
  end-page: 12881
  ident: b11
  article-title: A review on soft sensors for monitoring, control, and optimization of industrial processes
  publication-title: IEEE Sens. J.
– volume: 43
  start-page: 50
  year: 1989
  end-page: 54
  ident: b7
  article-title: Some implementations of the boxplot
  publication-title: Amer. Statist.
– volume: 11
  start-page: 1491
  year: 2003
  end-page: 1500
  ident: b6
  article-title: Soft analyzers for a sulfur recovery unit
  publication-title: Control Eng. Pract.
– year: 2024
  ident: b48
  article-title: ISSA-LSTM: A new data-driven method of heat load forecasting for building air conditioning
  publication-title: Energy Build.
– volume: 152
  start-page: 69
  year: 2016
  end-page: 79
  ident: b29
  article-title: Review of soft sensor methods for regression applications
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 58
  start-page: 11521
  year: 2019
  end-page: 11531
  ident: b37
  article-title: Dynamic soft sensor development based on convolutional neural networks
  publication-title: Ind. Eng. Chem. Res.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: b10
  article-title: Augmented multidimensional convolutional neural network for industrial soft sensing
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 31
  start-page: 1235
  year: 2019
  end-page: 1270
  ident: b41
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
– year: 2023
  ident: b32
  article-title: Novel deep layers-extended autoencoder with correlation and its industrial soft sensing
  publication-title: IEEE Trans. Ind. Inf.
– volume: 69
  start-page: 7953
  year: 2020
  end-page: 7961
  ident: b45
  article-title: Stacked enhanced auto-encoder for data-driven soft sensing of quality variable
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 17
  start-page: 5853
  year: 2021
  end-page: 5866
  ident: b31
  article-title: A survey on deep learning for data-driven soft sensors
  publication-title: IEEE Trans. Ind. Inf.
– year: 2023
  ident: b16
  article-title: A soft sensor model based on CNN-BiLSTM and IHHO algorithm for Tennessee Eastman process
  publication-title: Measurement
– volume: 221
  year: 2023
  ident: b38
  article-title: A novel soft sensor method based on stacked fusion autoencoder with feature enhancement for industrial application
  publication-title: Measurement
– volume: 17
  start-page: 5325
  year: 2020
  end-page: 5334
  ident: b39
  article-title: Variational autoencoder bidirectional long and short-term memory neural network soft-sensor model based on batch training strategy
  publication-title: IEEE Trans. Ind. Inf.
– volume: 42
  start-page: 74
  year: 2015
  end-page: 88
  ident: b26
  article-title: Statistical process monitoring of a multiphase flow facility
  publication-title: Control Eng. Pract.
– volume: 19
  start-page: 6056
  year: 2022
  end-page: 6068
  ident: b40
  article-title: Semi-supervised deep dynamic probabilistic latent variable model for multimode process soft sensor application
  publication-title: IEEE Trans. Ind. Inf.
– year: 2007
  ident: b5
  publication-title: Soft Sensors for Monitoring and Control of Industrial Processes
– year: 2024
  ident: b33
  article-title: Short-term load forecasting: A comprehensive review and simulation study with CNN-LSTM hybrids approach
  publication-title: IEEE Access
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b9
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 15
  start-page: 517
  year: 2024
  ident: b21
  article-title: Recurrent neural networks: A comprehensive review of architectures, variants, and applications
  publication-title: Information
– volume: 33
  start-page: 6999
  year: 2021
  end-page: 7019
  ident: b15
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 71
  start-page: 1
  year: 2022
  end-page: 13
  ident: b19
  article-title: A supervised bidirectional long short-term memory network for data-driven dynamic soft sensor modeling
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2023
  ident: b47
  article-title: Semi-supervised process data regression and application based on latent factor analysis model
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 24
  start-page: 223
  year: 2014
  end-page: 233
  ident: b27
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: J. Process Control
– volume: 119
  year: 2023
  ident: b8
  article-title: Attribute-relevant distributed variational autoencoder integrated with LSTM for dynamic industrial soft sensing
  publication-title: Eng. Appl. Artif. Intell.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: b14
  article-title: Deep learning
  publication-title: Nature
– volume: 53
  start-page: 13736
  year: 2014
  end-page: 13749
  ident: b42
  article-title: Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
  publication-title: Ind. Eng. Chem. Res.
– volume: 57
  start-page: 45
  year: 2024
  ident: b23
  article-title: Optimizing long-short-term memory models via metaheuristics for decomposition aided wind energy generation forecasting
  publication-title: Artif. Intell. Rev.
– volume: 233
  year: 2025
  ident: b12
  article-title: Particle swarm optimization tuned multi-headed long short-term memory networks approach for fuel prices forecasting
  publication-title: J. Netw. Comput. Appl.
– year: 2024
  ident: b22
  article-title: Forecasting bitcoin: Decomposition aided long short-term memory based time series modelling and its explanation with shapley values
  publication-title: Knowledge- Based Syst.
– volume: 33
  start-page: 7598
  year: 2021
  end-page: 7609
  ident: b2
  article-title: A deep probabilistic transfer learning framework for soft sensor modeling with missing data
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
– volume: 37
  start-page: 2708
  year: 2010
  end-page: 2713
  ident: b18
  article-title: Model optimization of SVM for a fermentation soft sensor
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 2700
  year: 2018
  end-page: 2709
  ident: b30
  article-title: Probabilistic sequential network for deep learning of complex process data and soft sensor application
  publication-title: IEEE Trans. Ind. Inf.
– volume: 33
  start-page: 795
  year: 2009
  end-page: 814
  ident: b13
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
– volume: 16
  start-page: 3168
  year: 2019
  end-page: 3176
  ident: b44
  article-title: Nonlinear dynamic soft sensor modeling with supervised long short-term memory network
  publication-title: IEEE Trans. Ind. Inf.
– volume: 2
  start-page: 97
  year: 2001
  end-page: 123
  ident: b25
  article-title: Kernel partial least squares regression in reproducing kernel hilbert space
  publication-title: J. Mach. Learn. Res.
– year: 2023
  ident: b20
  article-title: A novel deep learning-based robust dual-rate dynamic data modeling for quality prediction
  publication-title: IEEE Trans. Ind. Inf.
– year: 2022
  ident: b24
  article-title: Investigation of performance metrics in regression analysis and machine learning-based prediction models
  publication-title: 8th European Congress on Computational Methods in Applied Sciences and Engineering
– volume: 122
  year: 2023
  ident: b1
  article-title: A novel approach for quality control of automated production lines working under highly inconsistent conditions
  publication-title: Eng. Appl. Artif. Intell.
– volume: 127
  year: 2022
  ident: b28
  article-title: Enhancing the reliability and accuracy of data-driven dynamic soft sensor based on selective dynamic partial least squares models
  publication-title: Control Eng. Pract.
– volume: 104
  year: 2020
  ident: b46
  article-title: A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data
  publication-title: Control Eng. Pract.
– volume: 6
  start-page: 11
  year: 2009
  end-page: 17
  ident: b35
  article-title: Data-driven soft sensor approach for quality prediction in a refining process
  publication-title: IEEE Trans. Ind. Inf.
– volume: 126
  year: 2023
  ident: b49
  article-title: A soft sensor modeling framework embedded with domain knowledge based on spatio-temporal deep LSTM for process industry
  publication-title: Eng. Appl. Artif. Intell.
– volume: 126
  year: 2023
  ident: 10.1016/j.engappai.2025.110535_b49
  article-title: A soft sensor modeling framework embedded with domain knowledge based on spatio-temporal deep LSTM for process industry
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106847
– volume: 164
  year: 2024
  ident: 10.1016/j.engappai.2025.110535_b36
  article-title: Deep learning with local spatiotemporal structure preserving for soft sensor development of complex industrial processes
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.111974
– volume: 122
  year: 2023
  ident: 10.1016/j.engappai.2025.110535_b1
  article-title: A novel approach for quality control of automated production lines working under highly inconsistent conditions
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.106149
– volume: 71
  start-page: 1
  year: 2022
  ident: 10.1016/j.engappai.2025.110535_b19
  article-title: A supervised bidirectional long short-term memory network for data-driven dynamic soft sensor modeling
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2022.3152856
– volume: 104
  year: 2020
  ident: 10.1016/j.engappai.2025.110535_b46
  article-title: A dynamic CNN for nonlinear dynamic feature learning in soft sensor modeling of industrial process data
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2020.104614
– volume: 33
  start-page: 7598
  issue: 12
  year: 2021
  ident: 10.1016/j.engappai.2025.110535_b2
  article-title: A deep probabilistic transfer learning framework for soft sensor modeling with missing data
  publication-title: IEEE Trans. Neural Networks Learn. Syst.
  doi: 10.1109/TNNLS.2021.3085869
– volume: 33
  start-page: 795
  issue: 4
  year: 2009
  ident: 10.1016/j.engappai.2025.110535_b13
  article-title: Data-driven soft sensors in the process industry
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2008.12.012
– volume: 11
  start-page: 1491
  issue: 12
  year: 2003
  ident: 10.1016/j.engappai.2025.110535_b6
  article-title: Soft analyzers for a sulfur recovery unit
  publication-title: Control Eng. Pract.
  doi: 10.1016/S0967-0661(03)00079-0
– volume: 21
  start-page: 12868
  issue: 11
  year: 2020
  ident: 10.1016/j.engappai.2025.110535_b11
  article-title: A review on soft sensors for monitoring, control, and optimization of industrial processes
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.3033153
– volume: 15
  start-page: 2700
  issue: 5
  year: 2018
  ident: 10.1016/j.engappai.2025.110535_b30
  article-title: Probabilistic sequential network for deep learning of complex process data and soft sensor application
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2869899
– volume: 15
  start-page: 517
  issue: 9
  year: 2024
  ident: 10.1016/j.engappai.2025.110535_b21
  article-title: Recurrent neural networks: A comprehensive review of architectures, variants, and applications
  publication-title: Information
  doi: 10.3390/info15090517
– volume: 68
  start-page: 4404
  issue: 5
  year: 2020
  ident: 10.1016/j.engappai.2025.110535_b43
  article-title: Deep learning with spatiotemporal attention-based LSTM for industrial soft sensor model development
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2020.2984443
– volume: 57
  start-page: 45
  issue: 3
  year: 2024
  ident: 10.1016/j.engappai.2025.110535_b23
  article-title: Optimizing long-short-term memory models via metaheuristics for decomposition aided wind energy generation forecasting
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-023-10678-y
– year: 2022
  ident: 10.1016/j.engappai.2025.110535_b24
  article-title: Investigation of performance metrics in regression analysis and machine learning-based prediction models
– volume: 127
  year: 2022
  ident: 10.1016/j.engappai.2025.110535_b28
  article-title: Enhancing the reliability and accuracy of data-driven dynamic soft sensor based on selective dynamic partial least squares models
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2022.105292
– volume: 7
  year: 2021
  ident: 10.1016/j.engappai.2025.110535_b3
  article-title: The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation
  publication-title: PeerJ Comput. Sci.
  doi: 10.7717/peerj-cs.623
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2025.110535_b17
  article-title: Deep nonlinear dynamic feature extraction for quality prediction based on spatiotemporal neighborhood preserving SAE
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3118090
– volume: 37
  start-page: 2708
  issue: 4
  year: 2010
  ident: 10.1016/j.engappai.2025.110535_b18
  article-title: Model optimization of SVM for a fermentation soft sensor
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.08.008
– volume: 152
  start-page: 69
  year: 2016
  ident: 10.1016/j.engappai.2025.110535_b29
  article-title: Review of soft sensor methods for regression applications
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.12.011
– year: 2024
  ident: 10.1016/j.engappai.2025.110535_b48
  article-title: ISSA-LSTM: A new data-driven method of heat load forecasting for building air conditioning
  publication-title: Energy Build.
– volume: 16
  start-page: 3168
  issue: 5
  year: 2019
  ident: 10.1016/j.engappai.2025.110535_b44
  article-title: Nonlinear dynamic soft sensor modeling with supervised long short-term memory network
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2019.2902129
– volume: 69
  start-page: 7953
  issue: 10
  year: 2020
  ident: 10.1016/j.engappai.2025.110535_b45
  article-title: Stacked enhanced auto-encoder for data-driven soft sensing of quality variable
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2020.2985614
– volume: 58
  start-page: 11521
  issue: 26
  year: 2019
  ident: 10.1016/j.engappai.2025.110535_b37
  article-title: Dynamic soft sensor development based on convolutional neural networks
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.9b02513
– volume: 17
  start-page: 5325
  issue: 8
  year: 2020
  ident: 10.1016/j.engappai.2025.110535_b39
  article-title: Variational autoencoder bidirectional long and short-term memory neural network soft-sensor model based on batch training strategy
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3025204
– volume: 17
  start-page: 5853
  issue: 9
  year: 2021
  ident: 10.1016/j.engappai.2025.110535_b31
  article-title: A survey on deep learning for data-driven soft sensors
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2021.3053128
– volume: 6
  start-page: 11
  issue: 1
  year: 2009
  ident: 10.1016/j.engappai.2025.110535_b35
  article-title: Data-driven soft sensor approach for quality prediction in a refining process
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2009.2025124
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.engappai.2025.110535_b10
  article-title: Augmented multidimensional convolutional neural network for industrial soft sensing
  publication-title: IEEE Trans. Instrum. Meas.
– year: 2023
  ident: 10.1016/j.engappai.2025.110535_b20
  article-title: A novel deep learning-based robust dual-rate dynamic data modeling for quality prediction
  publication-title: IEEE Trans. Ind. Inf.
– year: 2023
  ident: 10.1016/j.engappai.2025.110535_b47
  article-title: Semi-supervised process data regression and application based on latent factor analysis model
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 119
  year: 2023
  ident: 10.1016/j.engappai.2025.110535_b8
  article-title: Attribute-relevant distributed variational autoencoder integrated with LSTM for dynamic industrial soft sensing
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2022.105737
– volume: 33
  start-page: 6999
  issue: 12
  year: 2021
  ident: 10.1016/j.engappai.2025.110535_b15
  article-title: A survey of convolutional neural networks: analysis, applications, and prospects
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3084827
– volume: 221
  year: 2023
  ident: 10.1016/j.engappai.2025.110535_b38
  article-title: A novel soft sensor method based on stacked fusion autoencoder with feature enhancement for industrial application
  publication-title: Measurement
  doi: 10.1016/j.measurement.2023.113491
– year: 2023
  ident: 10.1016/j.engappai.2025.110535_b16
  article-title: A soft sensor model based on CNN-BiLSTM and IHHO algorithm for Tennessee Eastman process
  publication-title: Measurement
– volume: 31
  start-page: 1235
  issue: 7
  year: 2019
  ident: 10.1016/j.engappai.2025.110535_b41
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– volume: 2
  start-page: 97
  issue: Dec
  year: 2001
  ident: 10.1016/j.engappai.2025.110535_b25
  article-title: Kernel partial least squares regression in reproducing kernel hilbert space
  publication-title: J. Mach. Learn. Res.
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.engappai.2025.110535_b9
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– year: 2023
  ident: 10.1016/j.engappai.2025.110535_b32
  article-title: Novel deep layers-extended autoencoder with correlation and its industrial soft sensing
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 1597
  year: 2017
  ident: 10.1016/j.engappai.2025.110535_b4
  article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.engappai.2025.110535_b14
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2024
  ident: 10.1016/j.engappai.2025.110535_b33
  article-title: Short-term load forecasting: A comprehensive review and simulation study with CNN-LSTM hybrids approach
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2024.3440631
– volume: 233
  year: 2025
  ident: 10.1016/j.engappai.2025.110535_b12
  article-title: Particle swarm optimization tuned multi-headed long short-term memory networks approach for fuel prices forecasting
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2024.104048
– volume: 24
  start-page: 223
  issue: 3
  year: 2014
  ident: 10.1016/j.engappai.2025.110535_b27
  article-title: Data-driven soft sensor development based on deep learning technique
  publication-title: J. Process Control
  doi: 10.1016/j.jprocont.2014.01.012
– year: 2007
  ident: 10.1016/j.engappai.2025.110535_b5
– year: 2024
  ident: 10.1016/j.engappai.2025.110535_b22
  article-title: Forecasting bitcoin: Decomposition aided long short-term memory based time series modelling and its explanation with shapley values
  publication-title: Knowledge- Based Syst.
  doi: 10.1016/j.knosys.2024.112026
– volume: 42
  start-page: 74
  year: 2015
  ident: 10.1016/j.engappai.2025.110535_b26
  article-title: Statistical process monitoring of a multiphase flow facility
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2015.04.012
– volume: 19
  start-page: 6056
  issue: 4
  year: 2022
  ident: 10.1016/j.engappai.2025.110535_b40
  article-title: Semi-supervised deep dynamic probabilistic latent variable model for multimode process soft sensor application
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3183211
– year: 2017
  ident: 10.1016/j.engappai.2025.110535_b34
  article-title: Attention is all you need
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 43
  start-page: 50
  issue: 1
  year: 1989
  ident: 10.1016/j.engappai.2025.110535_b7
  article-title: Some implementations of the boxplot
  publication-title: Amer. Statist.
  doi: 10.1080/00031305.1989.10475612
– volume: 53
  start-page: 13736
  issue: 35
  year: 2014
  ident: 10.1016/j.engappai.2025.110535_b42
  article-title: Locally weighted kernel principal component regression model for soft sensing of nonlinear time-variant processes
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie4041252
SSID ssj0003846
Score 2.4455574
Snippet The advancement of soft sensor technology has enabled the real-time estimation of critical parameters in complex industrial processes, where direct measurement...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110535
SubjectTerms Feature alignment
Soft sensor
Spatiotemporal feature extraction
Stacked convolutional autoencoder
Title FA-SconvAE-LSTM: Feature-Aligned Stacked Convolutional Autoencoder with Long Short-Term Memory Network for Soft Sensor Modeling
URI https://dx.doi.org/10.1016/j.engappai.2025.110535
Volume 150
WOSCitedRecordID wos001449933100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbbpIde-i5NX-jQW1BaPyTLuZmySRqSUPAWll6MLcvJhsUbNrtLesqfyA_OjCXZ7jaQltKLMcIj2Z7P0qfxPAj56PmiBM5WsAr2AiwMec5k6WumQq51qEov5EVTbCI6OZHjcfxtMLhxsTCraVTX8uoqvvivqoY2UDaGzv6FuttOoQHOQelwBLXD8Y8Uv5ewFH3JkyE7SkfHuOVHnreca5ZMJ6e1YZjw8ZYY7rey94KaWi5mmNYSs0s05tkjrEOUngFBZyOYwLeP0Sv3J8YIozdX46CYzjDpM2yF4RzLqk3dSuiM_V26w-3-v_LG_WDe-Ck1VUN6iUHbZWLZMFzXYRO3mDeG3R-6Pi0n3a8AO121kvvmskN0NLPS1q7hc_S_MpGdxtjmAm467yZjtfSZF5uSMe0EblLX_rYYGLvE-Q4MBU-YT3ZwGIx74CZDylqi7RQ7x76BFeIl4QOy6Uc8hul-M_k6HB-2K3wgTQCYu5le5Pndo91NenpEZvSUPLY7EJoY5DwjA10_J0_sboTauf4SmlzBD9f2glyvYWuXriGLWmTRX5BFe8iiiCyKyKIdsqhBFrXIooAsisiiBlnUIesl-b43HH05YLaCB1NA_RZMeVWsVeQHSlUiKEovCDwhtK9zGStg92UoeCVkHn4uqhwz_Qc61BJ4lae4DoQOXpGNelbr14QKDeu2iEtVAKHinBdSSh0XXhlEXEei2CLcveJM2fT2WGVlmjk_xvPMqSZD1WRGNVvkUyt3YRK83CsROw1mlqYa-pkB8O6RffMPsm_Jo-47eUc2FvOlfk8eqtVicjn_YDF6C1aJvdE
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=FA-SconvAE-LSTM%3A+Feature-Aligned+Stacked+Convolutional+Autoencoder+with+Long+Short-Term+Memory+Network+for+Soft+Sensor+Modeling&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Wu%2C+Ping&rft.au=Miao%2C+Zengdi&rft.au=Wang%2C+Ke&rft.au=Gao%2C+Jinfeng&rft.date=2025-06-15&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=150&rft_id=info:doi/10.1016%2Fj.engappai.2025.110535&rft.externalDocID=S0952197625005354
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon