Wavelet estimation of a regression model with mixed noises
Chesneau et al. ( Journal of Computational and Applied Mathematics , 2020) study nonparametric wavelet estimations over L 2 risk of a regression model with additive and multiplicative noises. This paper considers convergence rates over L p ( 1 ≤ p < + ∞ ) risk of linear wavelet estimator and nonl...
Uloženo v:
| Vydáno v: | Research in the mathematical sciences Ročník 11; číslo 4 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.12.2024
|
| Témata: | |
| ISSN: | 2522-0144, 2197-9847 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | Chesneau et al. (
Journal of Computational and Applied Mathematics
, 2020) study nonparametric wavelet estimations over
L
2
risk of a regression model with additive and multiplicative noises. This paper considers convergence rates over
L
p
(
1
≤
p
<
+
∞
)
risk of linear wavelet estimator and nonlinear wavelet estimator under some mild conditions. It turns out that our results reduce to the theorems of Chesneau et al., when
p
=
2
. |
|---|---|
| ISSN: | 2522-0144 2197-9847 |
| DOI: | 10.1007/s40687-024-00481-8 |