Deep learning-enhanced quantum optimization for integrated job scheduling in container terminals

This study explored the challenge of multi-equipment collaborative scheduling and management within container terminals, focusing on essential equipment such as reach stackers, automated guided vehicles (AGVs), quay cranes, and yard cranes. The job shop scheduling problem (JSSP) in container handlin...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 148; s. 110431
Hlavní autoři: Cuong, Truong Ngoc, Kim, Hwan-Seong, Bao Long, Le Ngoc, You, Sam-Sang, Tan, Nguyen Duy
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 15.05.2025
Témata:
ISSN:0952-1976
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study explored the challenge of multi-equipment collaborative scheduling and management within container terminals, focusing on essential equipment such as reach stackers, automated guided vehicles (AGVs), quay cranes, and yard cranes. The job shop scheduling problem (JSSP) in container handling was modeled using a quadratic unconstrained binary optimization (QUBO) formulation. A novel scheduling approach is developed based on the synergistic combination of an artificial intelligence (AI) algorithm and quantum computing (QC) (or AI-QC scheduler). This strategy integrates deep reinforcement learning (DRL) and a quantum approximate optimization algorithm (QAOA) to minimize the makespan (total completion time) with accurate coordination of port equipment. Based on operating scenarios in port environments, the proposed AI-QC scheduler offers significant advantages over traditional methods such as first-in-first-out (FIFO), shortest processing time (SPT), and genetic algorithms (GA), particularly in handling stochastic disturbances in processing times. The hybrid technique based on deep learning, quantum computing, and (DRL-QAOA) has self-optimization capabilities, adjusting to changes in market demand in port operations. The AI-QC scheduler can outperform benchmark algorithms in allocating and scheduling port resources, achieving a lower makespan and enhanced operational efficiency across various scenarios. Robust performance indicates optimizing equipment utilization and enhancing terminal throughput, particularly in unpredictable scenarios. Hence, deep-learning AI-driven quantum optimization strategies can improve the competitiveness and efficiency of container terminal operations in a rapidly evolving global market. •AI-QC scheduler effectively models the JSSP in container terminals using QUBO.•Hybrid algorithm with DRL-QAOA is presented to optimize port equipment scheduling.•DRL-QAOA approach outperforms FIFO, SPT, and GA under stochastic processing times.•Detailed analysis demonstrates the efficacy of job scheduler in handling JSSP challenges.•Quantum scheduler enhances equipment utilization and productivity, providing visibility.
AbstractList This study explored the challenge of multi-equipment collaborative scheduling and management within container terminals, focusing on essential equipment such as reach stackers, automated guided vehicles (AGVs), quay cranes, and yard cranes. The job shop scheduling problem (JSSP) in container handling was modeled using a quadratic unconstrained binary optimization (QUBO) formulation. A novel scheduling approach is developed based on the synergistic combination of an artificial intelligence (AI) algorithm and quantum computing (QC) (or AI-QC scheduler). This strategy integrates deep reinforcement learning (DRL) and a quantum approximate optimization algorithm (QAOA) to minimize the makespan (total completion time) with accurate coordination of port equipment. Based on operating scenarios in port environments, the proposed AI-QC scheduler offers significant advantages over traditional methods such as first-in-first-out (FIFO), shortest processing time (SPT), and genetic algorithms (GA), particularly in handling stochastic disturbances in processing times. The hybrid technique based on deep learning, quantum computing, and (DRL-QAOA) has self-optimization capabilities, adjusting to changes in market demand in port operations. The AI-QC scheduler can outperform benchmark algorithms in allocating and scheduling port resources, achieving a lower makespan and enhanced operational efficiency across various scenarios. Robust performance indicates optimizing equipment utilization and enhancing terminal throughput, particularly in unpredictable scenarios. Hence, deep-learning AI-driven quantum optimization strategies can improve the competitiveness and efficiency of container terminal operations in a rapidly evolving global market. •AI-QC scheduler effectively models the JSSP in container terminals using QUBO.•Hybrid algorithm with DRL-QAOA is presented to optimize port equipment scheduling.•DRL-QAOA approach outperforms FIFO, SPT, and GA under stochastic processing times.•Detailed analysis demonstrates the efficacy of job scheduler in handling JSSP challenges.•Quantum scheduler enhances equipment utilization and productivity, providing visibility.
ArticleNumber 110431
Author Kim, Hwan-Seong
Bao Long, Le Ngoc
Cuong, Truong Ngoc
Tan, Nguyen Duy
You, Sam-Sang
Author_xml – sequence: 1
  givenname: Truong Ngoc
  orcidid: 0000-0003-3338-0225
  surname: Cuong
  fullname: Cuong, Truong Ngoc
  organization: Department of Mechatronics, Faculty of Mechanical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam
– sequence: 2
  givenname: Hwan-Seong
  orcidid: 0009-0003-6167-5167
  surname: Kim
  fullname: Kim, Hwan-Seong
  organization: Department of Logistics, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea
– sequence: 3
  givenname: Le Ngoc
  orcidid: 0000-0002-4588-2786
  surname: Bao Long
  fullname: Bao Long, Le Ngoc
  organization: Department of Convergence Interdisciplinary Education of Maritime & Ocean Contents (Logistics system), Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea
– sequence: 4
  givenname: Sam-Sang
  orcidid: 0000-0003-2660-4630
  surname: You
  fullname: You, Sam-Sang
  email: ssyou@kmou.ac.kr
  organization: Northeast-Asia Shipping and Port Logistics Research Center, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea
– sequence: 5
  givenname: Nguyen Duy
  surname: Tan
  fullname: Tan, Nguyen Duy
  organization: Department of Logistics, Korea Maritime and Ocean University, 727 Taejong-ro, Yeongdo-gu, Busan, 49112, Republic of Korea
BookMark eNqFkMtOwzAQRb0oEm3hF5B_IMFOHCeRWIDKU6rEAvZm4kxaR4kdHBcJvp6UwoZNV3cxc65mzoLMrLNIyAVnMWdcXrYx2g0MA5g4YUkWc85EymdkzsosiXiZy1OyGMeWMZYWQs7J2y3iQDsEb43dRGi3YDXW9H0HNux66oZgevMFwThLG-epsQE3HsK007qKjnqL9a6b2GlCtbMBjEVPA_reWOjGM3LSTIHnv7kkL_d3r6vHaP388LS6WUc6EUmIKgDUCWSMC53nuqihbgqZ1mUCAlKsZFbJUqMQqRRFVWpZQyrLnDWcS12nS3J1aNXejaPHRmkTfo4OHkynOFN7P6pVf37U3o86-Jlw-Q8fvOnBfx4Hrw8gTq99GPRq1Ab3Bo1HHVTtzLGKb6Cji0E
CitedBy_id crossref_primary_10_1016_j_ocecoaman_2025_107820
crossref_primary_10_1016_j_asoc_2025_113899
crossref_primary_10_1016_j_engappai_2025_111705
Cites_doi 10.1016/j.eswa.2024.124589
10.1016/j.cor.2011.12.005
10.1016/j.camwa.2010.12.009
10.1016/j.comnet.2021.107969
10.1016/j.cor.2016.04.006
10.1016/j.trc.2014.03.014
10.1038/s41534-019-0235-y
10.1287/ijoc.3.2.149
10.1007/s11740-022-01145-8
10.1016/j.cirpj.2021.03.006
10.1109/MSP.2017.2743240
10.1016/j.apm.2004.09.009
10.1109/TITS.2022.3172241
10.1007/s11518-013-5210-0
10.1016/j.energy.2019.04.186
10.1016/j.swevo.2019.100594
10.1016/j.artmed.2020.101964
10.1007/s10845-007-0026-8
10.1016/j.cie.2015.01.003
10.1109/TITS.2020.3005854
10.1016/j.jmsy.2021.07.015
10.1016/j.aml.2019.106006
10.1007/s11128-023-03867-9
10.1016/j.ejor.2017.08.025
10.1057/s41278-023-00271-z
10.1103/PhysRevResearch.2.033446
10.1016/j.cie.2022.108102
10.1016/j.ejor.2023.03.013
10.4028/www.scientific.net/AMM.152-154.1487
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.110431
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_110431
S0952197625004312
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
29G
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
R2-
SBC
SET
UHS
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c242t-baaec2a5014c77c8dadf863d92a4a3eb65b69ce443648b9c6da36970f116cd3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439282500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0952-1976
IngestDate Tue Nov 18 22:39:53 EST 2025
Sat Nov 29 08:09:31 EST 2025
Sat Mar 29 16:08:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Multiple equipment
Container terminal
Job scheduling
Quantum optimization algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c242t-baaec2a5014c77c8dadf863d92a4a3eb65b69ce443648b9c6da36970f116cd3
ORCID 0000-0003-2660-4630
0000-0002-4588-2786
0009-0003-6167-5167
0000-0003-3338-0225
ParticipantIDs crossref_citationtrail_10_1016_j_engappai_2025_110431
crossref_primary_10_1016_j_engappai_2025_110431
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_110431
PublicationCentury 2000
PublicationDate 2025-05-15
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Fattahi, Saidi Mehrabad, Jolai (bib15) 2007; 18
Cheng, Xie, Wang, Tan, Cao (bib8) 2024; 255
Da Col, Teppan (bib9) 2022; 9
Xue, Zhang, Miao, Lin (bib39) 2013; 22
Yu, Huang, Chang (bib40) 2021; 60
Fitzek, Ghandriz, Laine, Granath, Kockum (bib16) 2021
Ng, Mak (bib27) 2005; 29
Denkena, Schinkel, Pirnay, Wilmsmeier (bib14) 2021; 33
Qing-Dao-Er-Ji, Wang (bib29) 2012; 39
Xin, Negenborn, Lodewijks (bib38) 2014; 44
Ku, Beck (bib22) 2016; 73
Cuong, Kim, Long, You (bib12) 2024; 26
Glover, Lewis, Kochenberger (bib19) 2018; 265
Ansere, Duong, Khosravirad, Sharma, Masaracchia, Dobre (bib2) 2023
Kaweegitbundit (bib21) 2012; 152–154
Neumann, de Heer, Phillipson (bib26) 2023; 22
Li, Peng, Wang, Wan (bib24) 2021; 22
Wauters, Panizon, Mbeng, Santoro (bib37) 2020; 2
Azad, Behera, Ahmed, Panigrahi, Farouk (bib6) 2023; 24
Fösel, Niu, Marquardt, Li (bib17) 2021
García-Pérez, Rossi, Maniscalco (bib18) 2020; 6
Rashidi, Tsang (bib30) 2011; 61
Venturelli, Marchand, Rojo (bib34) 2015
Schworm, Wu, Glatt, Aurich (bib32) 2023; 17
Wang, Hu, Wang, Xu, Ma, Yang (bib35) 2021; 190
Mohammadbagherpoor, Dreher, Ibrahim, Oh, Hall, Stone (bib25) 2021
Cuong, Kim, You, Nguyen (bib13) 2022; 168
Zhou, Wang, Choi, Pichler, Lukin (bib41) 2020; 10
Singh, Chen, Singhania, Nanavati, kar, Gupta (bib33) 2022; 2
Coronato, Naeem, De Pietro, Paragliola (bib10) 2020; 109
Saidi-Mehrabad, Dehnavi-Arani, Evazabadian, Mahmoodian (bib31) 2015; 86
Wang, Zhang, Yang (bib36) 2019; 51
Arulkumaran, Deisenroth, Brundage, Bharath (bib5) 2017; 34
Pei, Xu, Wu (bib28) 2020; 100
Ajagekar, You (bib1) 2019; 179
Kurowski, Pecyna, Slysz, Różycki, Waligóra, Wȩglarz (bib23) 2023; 310
Applegate, Cook (bib4) 1991; 3
Guo, You (bib20) 2024
Ansere, Gyamfi, Sharma, Shin, Dobre, Duong (bib3) 2023
Coronato (10.1016/j.engappai.2025.110431_bib10) 2020; 109
Pei (10.1016/j.engappai.2025.110431_bib28) 2020; 100
Cuong (10.1016/j.engappai.2025.110431_bib12) 2024; 26
Schworm (10.1016/j.engappai.2025.110431_bib32) 2023; 17
Fattahi (10.1016/j.engappai.2025.110431_bib15) 2007; 18
Singh (10.1016/j.engappai.2025.110431_bib33) 2022; 2
Kaweegitbundit (10.1016/j.engappai.2025.110431_bib21) 2012; 152–154
Wauters (10.1016/j.engappai.2025.110431_bib37) 2020; 2
Kurowski (10.1016/j.engappai.2025.110431_bib23) 2023; 310
Cheng (10.1016/j.engappai.2025.110431_bib8) 2024; 255
Guo (10.1016/j.engappai.2025.110431_bib20) 2024
Wang (10.1016/j.engappai.2025.110431_bib35) 2021; 190
Fitzek (10.1016/j.engappai.2025.110431_bib16) 2021
Ku (10.1016/j.engappai.2025.110431_bib22) 2016; 73
Glover (10.1016/j.engappai.2025.110431_bib19) 2018; 265
Rashidi (10.1016/j.engappai.2025.110431_bib30) 2011; 61
Li (10.1016/j.engappai.2025.110431_bib24) 2021; 22
Ng (10.1016/j.engappai.2025.110431_bib27) 2005; 29
Denkena (10.1016/j.engappai.2025.110431_bib14) 2021; 33
Ansere (10.1016/j.engappai.2025.110431_bib3) 2023
Fösel (10.1016/j.engappai.2025.110431_bib17) 2021
Applegate (10.1016/j.engappai.2025.110431_bib4) 1991; 3
Cuong (10.1016/j.engappai.2025.110431_bib13) 2022; 168
Ajagekar (10.1016/j.engappai.2025.110431_bib1) 2019; 179
Mohammadbagherpoor (10.1016/j.engappai.2025.110431_bib25) 2021
Xue (10.1016/j.engappai.2025.110431_bib39) 2013; 22
Qing-Dao-Er-Ji (10.1016/j.engappai.2025.110431_bib29) 2012; 39
Saidi-Mehrabad (10.1016/j.engappai.2025.110431_bib31) 2015; 86
Yu (10.1016/j.engappai.2025.110431_bib40) 2021; 60
Xin (10.1016/j.engappai.2025.110431_bib38) 2014; 44
Azad (10.1016/j.engappai.2025.110431_bib6) 2023; 24
Ansere (10.1016/j.engappai.2025.110431_bib2) 2023
Venturelli (10.1016/j.engappai.2025.110431_bib34) 2015
Arulkumaran (10.1016/j.engappai.2025.110431_bib5) 2017; 34
García-Pérez (10.1016/j.engappai.2025.110431_bib18) 2020; 6
Neumann (10.1016/j.engappai.2025.110431_bib26) 2023; 22
Wang (10.1016/j.engappai.2025.110431_bib36) 2019; 51
Da Col (10.1016/j.engappai.2025.110431_bib9) 2022; 9
Zhou (10.1016/j.engappai.2025.110431_bib41) 2020; 10
References_xml – year: 2021
  ident: bib25
  article-title: Exploring Airline Gate-Scheduling Optimization Using Quantum Computers
– volume: 34
  start-page: 26
  year: 2017
  end-page: 38
  ident: bib5
  article-title: Deep reinforcement learning: a brief survey
  publication-title: IEEE Signal Process. Mag.
– volume: 26
  start-page: 212
  year: 2024
  end-page: 240
  ident: bib12
  article-title: Seaport profit analysis and efficient management strategies under stochastic disruptions
  publication-title: Marit. Econ. Logist.
– volume: 44
  start-page: 214
  year: 2014
  end-page: 230
  ident: bib38
  article-title: Energy-aware control for automated container terminals using integrated flow shop scheduling and optimal control
  publication-title: Transport. Res. C Emerg. Technol.
– year: 2015
  ident: bib34
  article-title: Quantum Annealing Implementation of Job-Shop Scheduling
– volume: 265
  start-page: 829
  year: 2018
  end-page: 842
  ident: bib19
  article-title: Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems
  publication-title: Eur. J. Oper. Res.
– volume: 100
  year: 2020
  ident: bib28
  article-title: Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion
  publication-title: Appl. Math. Lett.
– volume: 17
  start-page: 105
  year: 2023
  end-page: 115
  ident: bib32
  article-title: Solving flexible job shop scheduling problems in manufacturing with Quantum Annealing
  publication-title: Prod. Eng.
– year: 2024
  ident: bib20
  article-title: Solving Sharp Bounded-Error Quantum Polynomial Time Problem by Evolution Methods
– volume: 6
  year: 2020
  ident: bib18
  article-title: IBM Q Experience as a versatile experimental testbed for simulating open quantum systems
  publication-title: Npj Quantum Inf
– volume: 29
  start-page: 263
  year: 2005
  end-page: 276
  ident: bib27
  article-title: Yard crane scheduling in port container terminals
  publication-title: Appl. Math. Model.
– volume: 61
  start-page: 630
  year: 2011
  end-page: 641
  ident: bib30
  article-title: A complete and an incomplete algorithm for automated guided vehicle scheduling in container terminals
  publication-title: Comput. Math. Appl.
– volume: 310
  start-page: 518
  year: 2023
  end-page: 528
  ident: bib23
  article-title: Application of quantum approximate optimization algorithm to job shop scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 24
  start-page: 7564
  year: 2023
  end-page: 7573
  ident: bib6
  article-title: Solving vehicle routing problem using quantum approximate optimization algorithm
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 109
  year: 2020
  ident: bib10
  article-title: Reinforcement learning for intelligent healthcare applications: a survey
  publication-title: Artif. Intell. Med.
– year: 2021
  ident: bib17
  article-title: Quantum Circuit Optimization with Deep Reinforcement Learning
– start-page: 406
  year: 2023
  end-page: 411
  ident: bib2
  article-title: Quantum deep reinforcement learning for 6G mobile edge computing-based IoT systems
  publication-title: Int. Wirel. Commun. Mob. Comput. IWCMC 2023
– volume: 39
  start-page: 2291
  year: 2012
  end-page: 2299
  ident: bib29
  article-title: A new hybrid genetic algorithm for job shop scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 168
  year: 2022
  ident: bib13
  article-title: Seaport throughput forecasting and post COVID-19 recovery policy by using effective decision‐making strategy: a case study of Vietnam ports
  publication-title: Comput. Ind. Eng.
– volume: 10
  year: 2020
  ident: bib41
  article-title: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– volume: 86
  start-page: 2
  year: 2015
  end-page: 13
  ident: bib31
  article-title: An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs
  publication-title: Comput. Ind. Eng.
– year: 2023
  ident: bib3
  article-title: Quantum deep reinforcement learning for dynamic resource allocation in mobile edge computing-based IoT systems
  publication-title: IEEE Trans. Wireless Commun.
– volume: 9
  year: 2022
  ident: bib9
  article-title: Industrial-size job shop scheduling with constraint programming
  publication-title: Oper Res Perspect
– volume: 60
  start-page: 487
  year: 2021
  end-page: 499
  ident: bib40
  article-title: Optimizing task scheduling in human-robot collaboration with deep multi-agent reinforcement learning
  publication-title: J. Manuf. Syst.
– volume: 33
  start-page: 100
  year: 2021
  end-page: 114
  ident: bib14
  article-title: Quantum algorithms for process parallel flexible job shop scheduling
  publication-title: CIRP J Manuf Sci Technol
– volume: 152–154
  start-page: 1487
  year: 2012
  end-page: 1491
  ident: bib21
  article-title: Evaluation dispatching rules for two-stage hybrid flow shop scheduling with parallel machines
  publication-title: Appl. Mech. Mater.
– volume: 51
  year: 2019
  ident: bib36
  article-title: An improved particle swarm optimization algorithm for dynamic job shop scheduling problems with random job arrivals
  publication-title: Swarm Evol. Comput.
– volume: 73
  start-page: 165
  year: 2016
  end-page: 173
  ident: bib22
  article-title: Mixed Integer Programming models for job shop scheduling: a computational analysis
  publication-title: Comput. Oper. Res.
– volume: 179
  start-page: 76
  year: 2019
  end-page: 89
  ident: bib1
  article-title: Quantum computing for energy systems optimization: challenges and opportunities
  publication-title: Energy
– year: 2021
  ident: bib16
  article-title: Applying Quantum Approximate Optimization to the Heterogeneous Vehicle Routing Problem
– volume: 22
  start-page: 7607
  year: 2021
  end-page: 7618
  ident: bib24
  article-title: Integrated resource assignment and scheduling optimization with limited critical equipment constraints at an automated container terminal
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 22
  year: 2023
  ident: bib26
  article-title: Quantum reinforcement learning: comparing quantum annealing and gate-based quantum computing with classical deep reinforcement learning
  publication-title: Quant. Inf. Process.
– volume: 190
  year: 2021
  ident: bib35
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Comput. Netw.
– volume: 2
  year: 2020
  ident: bib37
  article-title: Reinforcement-learning-assisted quantum optimization
  publication-title: Phys. Rev. Res.
– volume: 2
  year: 2022
  ident: bib33
  article-title: How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda
  publication-title: Int J Inf Manag Data Insights
– volume: 18
  start-page: 331
  year: 2007
  end-page: 342
  ident: bib15
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: J. Intell. Manuf.
– volume: 3
  start-page: 149
  year: 1991
  end-page: 156
  ident: bib4
  article-title: Computational study of the job-shop scheduling problem
  publication-title: ORSA J. Comput.
– volume: 255
  year: 2024
  ident: bib8
  article-title: Deep reinforcement learning driven cost minimization for batch order scheduling in robotic mobile fulfillment systems
  publication-title: Expert Syst. Appl.
– volume: 22
  start-page: 21
  year: 2013
  end-page: 37
  ident: bib39
  article-title: An ant colony algorithm for yard truck scheduling and yard location assignment problems with precedence constraints
  publication-title: J. Syst. Sci. Syst. Eng.
– volume: 255
  year: 2024
  ident: 10.1016/j.engappai.2025.110431_bib8
  article-title: Deep reinforcement learning driven cost minimization for batch order scheduling in robotic mobile fulfillment systems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124589
– volume: 39
  start-page: 2291
  year: 2012
  ident: 10.1016/j.engappai.2025.110431_bib29
  article-title: A new hybrid genetic algorithm for job shop scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.12.005
– volume: 61
  start-page: 630
  year: 2011
  ident: 10.1016/j.engappai.2025.110431_bib30
  article-title: A complete and an incomplete algorithm for automated guided vehicle scheduling in container terminals
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2010.12.009
– volume: 190
  year: 2021
  ident: 10.1016/j.engappai.2025.110431_bib35
  article-title: Dynamic job-shop scheduling in smart manufacturing using deep reinforcement learning
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2021.107969
– year: 2023
  ident: 10.1016/j.engappai.2025.110431_bib3
  article-title: Quantum deep reinforcement learning for dynamic resource allocation in mobile edge computing-based IoT systems
  publication-title: IEEE Trans. Wireless Commun.
– volume: 10
  year: 2020
  ident: 10.1016/j.engappai.2025.110431_bib41
  article-title: Quantum approximate optimization algorithm: performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– volume: 73
  start-page: 165
  year: 2016
  ident: 10.1016/j.engappai.2025.110431_bib22
  article-title: Mixed Integer Programming models for job shop scheduling: a computational analysis
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2016.04.006
– volume: 44
  start-page: 214
  year: 2014
  ident: 10.1016/j.engappai.2025.110431_bib38
  article-title: Energy-aware control for automated container terminals using integrated flow shop scheduling and optimal control
  publication-title: Transport. Res. C Emerg. Technol.
  doi: 10.1016/j.trc.2014.03.014
– year: 2021
  ident: 10.1016/j.engappai.2025.110431_bib16
– volume: 6
  year: 2020
  ident: 10.1016/j.engappai.2025.110431_bib18
  article-title: IBM Q Experience as a versatile experimental testbed for simulating open quantum systems
  publication-title: Npj Quantum Inf
  doi: 10.1038/s41534-019-0235-y
– volume: 3
  start-page: 149
  year: 1991
  ident: 10.1016/j.engappai.2025.110431_bib4
  article-title: Computational study of the job-shop scheduling problem
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.3.2.149
– volume: 17
  start-page: 105
  year: 2023
  ident: 10.1016/j.engappai.2025.110431_bib32
  article-title: Solving flexible job shop scheduling problems in manufacturing with Quantum Annealing
  publication-title: Prod. Eng.
  doi: 10.1007/s11740-022-01145-8
– start-page: 406
  year: 2023
  ident: 10.1016/j.engappai.2025.110431_bib2
  article-title: Quantum deep reinforcement learning for 6G mobile edge computing-based IoT systems
– volume: 33
  start-page: 100
  year: 2021
  ident: 10.1016/j.engappai.2025.110431_bib14
  article-title: Quantum algorithms for process parallel flexible job shop scheduling
  publication-title: CIRP J Manuf Sci Technol
  doi: 10.1016/j.cirpj.2021.03.006
– volume: 34
  start-page: 26
  year: 2017
  ident: 10.1016/j.engappai.2025.110431_bib5
  article-title: Deep reinforcement learning: a brief survey
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2743240
– volume: 29
  start-page: 263
  year: 2005
  ident: 10.1016/j.engappai.2025.110431_bib27
  article-title: Yard crane scheduling in port container terminals
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2004.09.009
– volume: 24
  start-page: 7564
  year: 2023
  ident: 10.1016/j.engappai.2025.110431_bib6
  article-title: Solving vehicle routing problem using quantum approximate optimization algorithm
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2022.3172241
– volume: 22
  start-page: 21
  year: 2013
  ident: 10.1016/j.engappai.2025.110431_bib39
  article-title: An ant colony algorithm for yard truck scheduling and yard location assignment problems with precedence constraints
  publication-title: J. Syst. Sci. Syst. Eng.
  doi: 10.1007/s11518-013-5210-0
– volume: 179
  start-page: 76
  year: 2019
  ident: 10.1016/j.engappai.2025.110431_bib1
  article-title: Quantum computing for energy systems optimization: challenges and opportunities
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.186
– volume: 51
  year: 2019
  ident: 10.1016/j.engappai.2025.110431_bib36
  article-title: An improved particle swarm optimization algorithm for dynamic job shop scheduling problems with random job arrivals
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.100594
– volume: 109
  year: 2020
  ident: 10.1016/j.engappai.2025.110431_bib10
  article-title: Reinforcement learning for intelligent healthcare applications: a survey
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101964
– volume: 18
  start-page: 331
  year: 2007
  ident: 10.1016/j.engappai.2025.110431_bib15
  article-title: Mathematical modeling and heuristic approaches to flexible job shop scheduling problems
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-007-0026-8
– volume: 86
  start-page: 2
  year: 2015
  ident: 10.1016/j.engappai.2025.110431_bib31
  article-title: An Ant Colony Algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGVs
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2015.01.003
– volume: 22
  start-page: 7607
  year: 2021
  ident: 10.1016/j.engappai.2025.110431_bib24
  article-title: Integrated resource assignment and scheduling optimization with limited critical equipment constraints at an automated container terminal
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2020.3005854
– volume: 9
  year: 2022
  ident: 10.1016/j.engappai.2025.110431_bib9
  article-title: Industrial-size job shop scheduling with constraint programming
  publication-title: Oper Res Perspect
– volume: 60
  start-page: 487
  year: 2021
  ident: 10.1016/j.engappai.2025.110431_bib40
  article-title: Optimizing task scheduling in human-robot collaboration with deep multi-agent reinforcement learning
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.07.015
– year: 2021
  ident: 10.1016/j.engappai.2025.110431_bib25
– volume: 100
  year: 2020
  ident: 10.1016/j.engappai.2025.110431_bib28
  article-title: Stochastic averaging for stochastic differential equations driven by fractional Brownian motion and standard Brownian motion
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.106006
– volume: 22
  year: 2023
  ident: 10.1016/j.engappai.2025.110431_bib26
  article-title: Quantum reinforcement learning: comparing quantum annealing and gate-based quantum computing with classical deep reinforcement learning
  publication-title: Quant. Inf. Process.
  doi: 10.1007/s11128-023-03867-9
– volume: 265
  start-page: 829
  year: 2018
  ident: 10.1016/j.engappai.2025.110431_bib19
  article-title: Logical and inequality implications for reducing the size and difficulty of quadratic unconstrained binary optimization problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2017.08.025
– year: 2015
  ident: 10.1016/j.engappai.2025.110431_bib34
– year: 2021
  ident: 10.1016/j.engappai.2025.110431_bib17
– volume: 26
  start-page: 212
  year: 2024
  ident: 10.1016/j.engappai.2025.110431_bib12
  article-title: Seaport profit analysis and efficient management strategies under stochastic disruptions
  publication-title: Marit. Econ. Logist.
  doi: 10.1057/s41278-023-00271-z
– volume: 2
  year: 2020
  ident: 10.1016/j.engappai.2025.110431_bib37
  article-title: Reinforcement-learning-assisted quantum optimization
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.033446
– volume: 2
  year: 2022
  ident: 10.1016/j.engappai.2025.110431_bib33
  article-title: How are reinforcement learning and deep learning algorithms used for big data based decision making in financial industries–A review and research agenda
  publication-title: Int J Inf Manag Data Insights
– volume: 168
  year: 2022
  ident: 10.1016/j.engappai.2025.110431_bib13
  article-title: Seaport throughput forecasting and post COVID-19 recovery policy by using effective decision‐making strategy: a case study of Vietnam ports
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108102
– volume: 310
  start-page: 518
  year: 2023
  ident: 10.1016/j.engappai.2025.110431_bib23
  article-title: Application of quantum approximate optimization algorithm to job shop scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2023.03.013
– year: 2024
  ident: 10.1016/j.engappai.2025.110431_bib20
– volume: 152–154
  start-page: 1487
  year: 2012
  ident: 10.1016/j.engappai.2025.110431_bib21
  article-title: Evaluation dispatching rules for two-stage hybrid flow shop scheduling with parallel machines
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.152-154.1487
SSID ssj0003846
Score 2.4539602
Snippet This study explored the challenge of multi-equipment collaborative scheduling and management within container terminals, focusing on essential equipment such...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110431
SubjectTerms Container terminal
Deep learning
Job scheduling
Multiple equipment
Quantum optimization algorithm
Title Deep learning-enhanced quantum optimization for integrated job scheduling in container terminals
URI https://dx.doi.org/10.1016/j.engappai.2025.110431
Volume 148
WOSCitedRecordID wos001439282500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0952-1976
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0003846
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIdeuhdJN_DQm0DX1kKKx6BNkRaGUcA--KZSJO3GsCXXS5pvyldmKFKU3ARNc-hFECgMtczTzHA4C0If0iQ1ZcRCQkMVkljpnOSMmq6pLJpyqXssrxKFB2w4TCcT_r3TuapzYS4WrCjSy0u--q-shjFgtkmdvQe7_aQwAOfAdDgC2-H4T4z_rPWqbgYxI7r4aff4f-3gG-6WQQkyYumSL6sYQ18wQgXzMg9gtQvaZ-FSXUwkuzD5gYGLmlls9nz5TTXDoL0VXkUXrKswpKopSKvup9_02Llg4PHanAXDWSmbgIAKpWe_RUFGunTKtfK3lsHA0Q30Hg2ILevhXpKRcBTOmxEmZiPe5nN6t2RI-tz2hPES2hbjdDIWDJbYao4b4t96IuZdXczgpcV519yi2xDs19v-Qw_66MQ68G2e1fNkZp7MzvMAHYYs4aAEDk--nk6-eb0fpTYtrH6DVj767U90uynUMm_GT9Fjty7BJxZPz1BHF8_RE7dGwU4DbGCobgNSj71APwzi8A3EYYc43EYcBsThBnEYEIcbxMEV7BGHPeJeotGX0_GnM-IadxAJFt-W5EJoGQqzZS0Zk6kSaprSSPFQxCLSOU1yCnIgjiMapzmXVImIctab9vtUqugVOijKQh8h3FOUc2lqBqZhnOs8jRWjfdHjpsgS1-wYJfUXzKSraW9aqyyyv_PwGH30dCtb1eVOCl4zKHO2qbU5M8DeHbSv7323N-hR83O8RQfb9U6_Qw_lxfZ8s37vgHcN0JS4rw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-enhanced+quantum+optimization+for+integrated+job+scheduling+in+container+terminals&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Cuong%2C+Truong+Ngoc&rft.au=Kim%2C+Hwan-Seong&rft.au=Bao+Long%2C+Le+Ngoc&rft.au=You%2C+Sam-Sang&rft.date=2025-05-15&rft.issn=0952-1976&rft.volume=148&rft.spage=110431&rft_id=info:doi/10.1016%2Fj.engappai.2025.110431&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_engappai_2025_110431
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon