Vibration suppression of ball-screw drive system based on flexible dynamics model

Aiming at the problem of residual vibration of the ball-screw drive system when it stops in high-speed motion, a vibration suppression method based on the flexible dynamics model is proposed. A simplified flexible dynamics model of the ball-screw system is developed using the Lagrange method and rew...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering applications of artificial intelligence Ročník 117; s. 105506
Hlavní autoři: Li, Lin, Zhang, Qiangwei, Zhang, Tie, Zou, Yanbiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.01.2023
Témata:
ISSN:0952-1976, 1873-6769
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Aiming at the problem of residual vibration of the ball-screw drive system when it stops in high-speed motion, a vibration suppression method based on the flexible dynamics model is proposed. A simplified flexible dynamics model of the ball-screw system is developed using the Lagrange method and rewritten as a parametric identification equation containing only the motor’s rotation angle. A Particle Swarm Optimization algorithm based on Recursive Least Square finite search space (RLS-PSO) is proposed for dynamic parameter identification and the results are used to design a coupled ZVD shaper to suppress residual vibration in the ball-screw drive system. The experimental results of model identification show that RLS-PSO is more accurate than WLS, PSO and GA, and the convergence speed is much higher compared to PSO and GA. The simplified dynamics model can reflect the dynamic characteristics of the system accurately. The results of the vibration experiments demonstrate the effectiveness of the input shaper designed using the identification results in suppressing residual vibration of the ball-screw drive system.
ISSN:0952-1976
1873-6769
DOI:10.1016/j.engappai.2022.105506