Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods
Land use pattern can substantially shape urban thermal environment. Although previous studies have shown that urban heat island (UHI) intensity will be easily affected by the landscape pattern of green space, the relationship between the morphological spatial pattern of green space and UHI intensity...
Gespeichert in:
| Veröffentlicht in: | Building and environment Jg. 228; S. 109910 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
15.01.2023
|
| Schlagworte: | |
| ISSN: | 0360-1323, 1873-684X |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Land use pattern can substantially shape urban thermal environment. Although previous studies have shown that urban heat island (UHI) intensity will be easily affected by the landscape pattern of green space, the relationship between the morphological spatial pattern of green space and UHI intensity remains to be discovered. Compared with landscape pattern, morphological spatial pattern analysis (MSPA) can reveal more specific details on the configuration and composition of land use. Therefore, this study aims to explore whether the morphological spatial pattern of land use matters to UHI using machine learning methods. Firstly, the morphological characteristics of green space were analyzed based on MSPA. Secondly, the linear associations between UHI intensity and a set of potential influencing factors (including morphological characteristics) were measured according to correlation coefficient. Lastly, the non-linear contribution of the morphological factors to UHI intensity was quantified based on random forest. An empirical case study in a rapidly-urbanized city has revealed the huge influence of morphological characteristics on UHI intensity with benchmark factors considered. The UHI intensity was negatively correlated with the cores, perforations, and loops of green space, but positively correlated with islets. Therefore, a few large core areas would be better than a large number of small islets when the total amount of green space is fixed. In addition, the fragmented patches of green space should be integrated or connected to enhance the cooling capacity. Our findings could offer some insights for UHI mitigation and land use planning, especially when the size of green space cannot be unlimitedly increased.
•Relationship between morphological pattern of green space and UHI is analyzed.•UHI intensity can be better explained after considering key morphological factors.•Core, perforation, loop of green space exerted huge influences on UHI intensity.•A few large core areas would be better than a large number of small islets.•This study may offer practical guidance for UHI mitigation and urban design. |
|---|---|
| AbstractList | Land use pattern can substantially shape urban thermal environment. Although previous studies have shown that urban heat island (UHI) intensity will be easily affected by the landscape pattern of green space, the relationship between the morphological spatial pattern of green space and UHI intensity remains to be discovered. Compared with landscape pattern, morphological spatial pattern analysis (MSPA) can reveal more specific details on the configuration and composition of land use. Therefore, this study aims to explore whether the morphological spatial pattern of land use matters to UHI using machine learning methods. Firstly, the morphological characteristics of green space were analyzed based on MSPA. Secondly, the linear associations between UHI intensity and a set of potential influencing factors (including morphological characteristics) were measured according to correlation coefficient. Lastly, the non-linear contribution of the morphological factors to UHI intensity was quantified based on random forest. An empirical case study in a rapidly-urbanized city has revealed the huge influence of morphological characteristics on UHI intensity with benchmark factors considered. The UHI intensity was negatively correlated with the cores, perforations, and loops of green space, but positively correlated with islets. Therefore, a few large core areas would be better than a large number of small islets when the total amount of green space is fixed. In addition, the fragmented patches of green space should be integrated or connected to enhance the cooling capacity. Our findings could offer some insights for UHI mitigation and land use planning, especially when the size of green space cannot be unlimitedly increased.
•Relationship between morphological pattern of green space and UHI is analyzed.•UHI intensity can be better explained after considering key morphological factors.•Core, perforation, loop of green space exerted huge influences on UHI intensity.•A few large core areas would be better than a large number of small islets.•This study may offer practical guidance for UHI mitigation and urban design. |
| ArticleNumber | 109910 |
| Author | Qiu, Suixuan Tan, Xiujuan Zhuang, Yaye Lin, Jinyao |
| Author_xml | – sequence: 1 givenname: Jinyao surname: Lin fullname: Lin, Jinyao email: linjyao@mail2.sysu.edu.cn – sequence: 2 givenname: Suixuan surname: Qiu fullname: Qiu, Suixuan – sequence: 3 givenname: Xiujuan surname: Tan fullname: Tan, Xiujuan – sequence: 4 givenname: Yaye surname: Zhuang fullname: Zhuang, Yaye |
| BookMark | eNqFkM1KAzEUhYNUsK2-guQFpuZnOp2AC6X4B4obBXchk7nTSZkmQ5JW3PvgZlrduOnqwLn33Mv5JmhknQWELimZUUKLq_Ws2pquBrubMcJYMoWg5ASNabngWVHmHyM0JrwgGeWMn6FJCGuSgoLnY_T9AipsvbErHFvAHjoVjbOhNT2uIH4CWLxxvm9d51ZGqw6HPm0kTRLBW-wavPLDWhpowMrWeOsrZXELKmITur0Thg8bpVtjAXegvN0bEFtXh3N02qguwMWvTtH7_d3b8jF7fn14Wt4-Z5rlLGYLssgJpRUTqVjD80ppQXLGClFRIFUpdAXzQpWkJKloSWoqGpLrOWeloPO85lNUHO5q70Lw0Mjem43yX5ISObCUa_nHUg4s5YFlCl7_C2oT96CiV6Y7Hr85xCGV2xnwMmgDVkNtPOgoa2eOnfgBFsGZNg |
| CitedBy_id | crossref_primary_10_1016_j_ecolind_2023_111201 crossref_primary_10_1016_j_jenvman_2024_122985 crossref_primary_10_1016_j_buildenv_2025_113068 crossref_primary_10_3390_land13111874 crossref_primary_10_3390_su16114762 crossref_primary_10_1016_j_uclim_2025_102367 crossref_primary_10_1016_j_uclim_2025_102406 crossref_primary_10_1109_JSTARS_2025_3587268 crossref_primary_10_3390_rs16030599 crossref_primary_10_1016_j_uclim_2024_102006 crossref_primary_10_1016_j_scs_2025_106352 crossref_primary_10_1016_j_jclepro_2025_145580 crossref_primary_10_1016_j_scs_2025_106350 crossref_primary_10_3390_ijerph20010734 crossref_primary_10_1016_j_landurbplan_2025_105296 crossref_primary_10_1016_j_ecolind_2024_112418 crossref_primary_10_3390_land12081643 crossref_primary_10_1016_j_landusepol_2024_107259 crossref_primary_10_3390_su16208897 crossref_primary_10_1007_s11356_024_33091_6 crossref_primary_10_3390_urbansci9090361 crossref_primary_10_1016_j_ecolind_2024_111972 crossref_primary_10_1007_s41976_024_00156_6 crossref_primary_10_1016_j_cities_2024_104919 crossref_primary_10_1080_15481603_2024_2318070 crossref_primary_10_1016_j_scitotenv_2023_168423 crossref_primary_10_3390_rs15184618 crossref_primary_10_1016_j_buildenv_2024_112026 crossref_primary_10_1080_17538947_2025_2509870 crossref_primary_10_1016_j_scs_2025_106800 crossref_primary_10_1016_j_ecoser_2025_101727 crossref_primary_10_1016_j_scs_2024_105414 crossref_primary_10_1016_j_landurbplan_2025_105344 crossref_primary_10_1016_j_ufug_2025_128698 crossref_primary_10_1007_s10901_024_10147_0 crossref_primary_10_1016_j_ecolind_2023_110864 crossref_primary_10_1016_j_ecolind_2024_112237 crossref_primary_10_3390_rs15123110 crossref_primary_10_1016_j_jenvman_2024_123975 crossref_primary_10_1016_j_asr_2025_07_073 crossref_primary_10_3390_rs15143683 crossref_primary_10_3390_smartcities7040084 crossref_primary_10_1016_j_uclim_2025_102423 crossref_primary_10_1016_j_uclim_2025_102428 crossref_primary_10_1080_15481603_2025_2490317 crossref_primary_10_1061_JUPDDM_UPENG_5010 crossref_primary_10_3390_su17157040 crossref_primary_10_1016_j_ssci_2024_106497 crossref_primary_10_1016_j_uclim_2025_102546 crossref_primary_10_1038_s41598_023_36850_6 crossref_primary_10_1016_j_buildenv_2023_110930 crossref_primary_10_1016_j_rsase_2024_101372 crossref_primary_10_3390_su17136193 crossref_primary_10_1016_j_buildenv_2023_111102 crossref_primary_10_1016_j_scs_2025_106255 crossref_primary_10_1016_j_scs_2024_106014 crossref_primary_10_3390_rs17101678 crossref_primary_10_1016_j_ecolind_2024_111669 crossref_primary_10_1016_j_scs_2025_106815 crossref_primary_10_1016_j_ufug_2025_129019 crossref_primary_10_1002_joc_8642 crossref_primary_10_3390_land13071009 crossref_primary_10_3390_urbansci9070234 crossref_primary_10_1016_j_rser_2025_116259 crossref_primary_10_3390_su151410767 crossref_primary_10_3390_land12112073 crossref_primary_10_1016_j_scs_2024_106087 crossref_primary_10_1016_j_cacint_2025_100234 crossref_primary_10_1002_ldr_5282 crossref_primary_10_1007_s00484_024_02814_2 crossref_primary_10_1016_j_scs_2025_106546 crossref_primary_10_13111_2066_8201_2024_16_3_4 crossref_primary_10_1016_j_jclepro_2023_139414 crossref_primary_10_1016_j_scitotenv_2025_178759 crossref_primary_10_3390_atmos16070857 crossref_primary_10_1016_j_ecolind_2023_110550 crossref_primary_10_1016_j_jclepro_2023_138563 crossref_primary_10_1016_j_scitotenv_2024_172974 crossref_primary_10_3390_rs16234369 crossref_primary_10_1016_j_buildenv_2025_112572 crossref_primary_10_1016_j_compenvurbsys_2024_102200 crossref_primary_10_1016_j_compenvurbsys_2025_102320 crossref_primary_10_1016_j_uclim_2025_102325 crossref_primary_10_1016_j_ecolind_2024_112173 crossref_primary_10_1016_j_scs_2023_104891 crossref_primary_10_1016_j_uclim_2024_102046 crossref_primary_10_1080_17538947_2024_2392832 crossref_primary_10_1061_JUPDDM_UPENG_5343 crossref_primary_10_1016_j_cities_2025_106334 crossref_primary_10_1061_JUPDDM_UPENG_4772 crossref_primary_10_3390_rs16183374 crossref_primary_10_1016_j_scs_2025_106278 crossref_primary_10_1016_j_scs_2025_106432 crossref_primary_10_1007_s41976_024_00130_2 crossref_primary_10_1016_j_clpl_2024_100088 crossref_primary_10_1016_j_ecolind_2025_113418 crossref_primary_10_1371_journal_pone_0330913 crossref_primary_10_3390_f15010135 crossref_primary_10_1007_s10661_025_14461_0 crossref_primary_10_1016_j_scs_2025_106173 crossref_primary_10_3390_su17104287 crossref_primary_10_1061_JUPDDM_UPENG_5233 crossref_primary_10_3390_su16083473 crossref_primary_10_1016_j_uclim_2025_102618 crossref_primary_10_1016_j_envc_2025_101174 crossref_primary_10_1016_j_ufug_2025_128813 crossref_primary_10_1007_s41976_024_00180_6 crossref_primary_10_1016_j_scs_2024_105974 crossref_primary_10_1016_j_scs_2025_106842 crossref_primary_10_1016_j_scs_2024_105614 crossref_primary_10_3390_atmos14101559 crossref_primary_10_1016_j_scs_2024_105978 crossref_primary_10_1016_j_buildenv_2024_112190 crossref_primary_10_1016_j_scs_2023_104756 crossref_primary_10_1016_S2542_5196_25_00022_1 crossref_primary_10_3390_land13071037 crossref_primary_10_1016_j_asr_2023_06_027 crossref_primary_10_3390_su16104109 crossref_primary_10_1016_j_uclim_2024_102229 crossref_primary_10_3390_f15050812 crossref_primary_10_3390_su151914603 crossref_primary_10_1016_j_scs_2023_105040 crossref_primary_10_1038_s41598_025_07980_w crossref_primary_10_3390_su15064996 crossref_primary_10_1016_j_scs_2024_105763 crossref_primary_10_1016_j_ufug_2025_128922 crossref_primary_10_1080_14498596_2024_2343751 crossref_primary_10_3390_buildings13020528 crossref_primary_10_3390_urbansci9040126 crossref_primary_10_1016_j_asr_2025_06_063 crossref_primary_10_1007_s11252_025_01769_5 crossref_primary_10_1016_j_ecolind_2025_113390 crossref_primary_10_1016_j_scs_2024_106046 crossref_primary_10_3390_su17010241 crossref_primary_10_1016_j_heliyon_2024_e31363 crossref_primary_10_3390_atmos15121435 crossref_primary_10_1007_s10661_025_14415_6 crossref_primary_10_1016_j_ecolind_2023_110920 crossref_primary_10_3390_su16219490 crossref_primary_10_3390_f16040681 |
| Cites_doi | 10.1016/j.buildenv.2022.108928 10.1016/j.apr.2020.03.010 10.1016/j.biocon.2019.07.028 10.1016/j.landurbplan.2020.103873 10.1186/s41610-021-00203-z 10.1155/2020/3896589 10.1016/j.oneear.2021.11.010 10.1016/j.isprsjprs.2013.12.010 10.1016/j.buildenv.2019.106541 10.1016/j.landurbplan.2017.09.019 10.1007/s10980-006-9013-2 10.3390/su11020513 10.1038/s41598-017-09628-w 10.1007/s11252-014-0387-7 10.1016/j.ufug.2014.09.009 10.2298/TSCI150214085K 10.1007/s10661-019-7749-9 10.1016/j.rse.2016.02.063 10.1016/j.jclepro.2021.129324 10.1080/20964471.2019.1625151 10.1016/j.scs.2018.12.038 10.1016/j.scitotenv.2016.10.195 10.1038/s41467-020-15218-8 10.1016/j.ufug.2019.04.008 10.1016/j.buildenv.2022.108906 10.1007/s10668-015-9653-y 10.1111/rec.12522 10.1016/j.rse.2018.06.010 10.1016/j.landurbplan.2018.05.015 10.1016/j.buildenv.2019.04.058 10.1016/j.habitatint.2017.07.009 10.1016/j.ecolind.2017.07.002 10.1016/j.pce.2019.01.002 10.1007/s10661-018-6564-z 10.1016/j.ufug.2021.127159 10.1016/j.apenergy.2016.09.070 10.1016/j.uclim.2020.100688 10.1007/s10980-012-9833-1 10.1016/j.buildenv.2020.107390 10.1016/j.ecoser.2016.11.011 10.1016/j.envsoft.2020.104719 10.1016/j.patrec.2008.10.015 10.14358/PERS.87.2.81 10.1016/j.buildenv.2021.108573 10.1016/j.rse.2017.03.043 10.1016/j.ufug.2014.07.006 10.1016/j.scs.2019.101972 10.1016/j.ecolind.2021.108138 10.1016/j.buildenv.2018.03.041 10.1029/2019EA001006 10.1016/j.landurbplan.2014.02.019 10.1038/s41467-019-13462-1 10.1016/j.ecolind.2018.09.058 10.1016/j.scib.2019.03.002 10.1023/A:1010933404324 10.1016/j.apr.2021.101147 10.1016/j.ecolind.2020.106699 10.1016/j.uclim.2020.100743 10.1016/j.jenvman.2020.110407 10.1111/gcb.12553 10.1016/j.landurbplan.2017.04.009 10.1016/j.ecolind.2012.08.017 10.3390/su14084530 10.1016/j.compenvurbsys.2018.05.006 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.buildenv.2022.109910 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-684X |
| ExternalDocumentID | 10_1016_j_buildenv_2022_109910 S0360132322011404 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM LY6 LY7 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SEN SES SPC SPCBC SSJ SSR SST SSZ T5K ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- SAC SET SEW VH1 WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c242t-7074011b29873f34bac9042269b1e0b89cbe56a808032380d19f04c53289154d3 |
| ISICitedReferencesCount | 159 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000906312200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0360-1323 |
| IngestDate | Tue Nov 18 22:25:28 EST 2025 Sat Nov 29 07:20:34 EST 2025 Sat Apr 20 15:59:42 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Green space Morphological spatial pattern analysis Urban heat island Environmental planning Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c242t-7074011b29873f34bac9042269b1e0b89cbe56a808032380d19f04c53289154d3 |
| ParticipantIDs | crossref_primary_10_1016_j_buildenv_2022_109910 crossref_citationtrail_10_1016_j_buildenv_2022_109910 elsevier_sciencedirect_doi_10_1016_j_buildenv_2022_109910 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-01-15 |
| PublicationDateYYYYMMDD | 2023-01-15 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Building and environment |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Masoudi, Tan, Fadaei (bib63) 2021; 35 Zhang, Cheng (bib47) 2020; 7 Feng, Lei, Tong, Gao, Chen, Wang, Wang (bib2) 2020; 263 Vogt, Riitters, Estreguil, Kozak, Wade, Wickham (bib30) 2007; 22 Wu, Li, Zhang, Zhao, Liang, Wang (bib45) 2020; 117 Srivanit, Iamtrakul (bib28) 2019; 191 Li, Zhou (bib27) 2019; 41 Lin, Li, Li, Wen (bib31) 2020; 129 Kong, Yin, Wang, Cavan, James (bib5) 2014; 13 Silva, Silva, Santos (bib18) 2018; 136 Yu, Guo, Jørgensen, Vejre (bib29) 2017; 82 Sun, Xie, Chen (bib66) 2018; 178 Maimaitiyiming, Ghulam, Tiyip, Pla, Latorre-Carmona, Halik, Sawut, Caetano (bib17) 2014; 89 Gong, Liu, Zhang, Li, Wang, Huang, Clinton, Ji, Li, Bai, Chen, Xu, Zhu, Yuan, Ping Suen, Guo, Xu, Li, Zhao, Yang, Yu, Wang, Fu, Yu, Dronova, Hui, Cheng, Shi, Xiao, Liu, Song (bib41) 2019; 64 Soydan (bib58) 2020; 34 Wickham, Riitters, Vogt, Costanza, Neale (bib35) 2017; 25 Connors, Galletti, Chow (bib10) 2013; 28 Chen, Dai, Yang, Zhu (bib36) 2019; 158 Lloyd, Chamberlain, Kerr, Yetman, Pistolesi, Stevens, Gaughan, Nieves, Hornby, MacManus, Sinha, Bondarenko, Sorichetta, Tatem (bib46) 2019; 3 Liu, Zhao, Muhammad, Liu, Chen (bib22) 2020; 2020 Tepanosyan, Muradyan, Hovsepyan, Pinigin, Medvedev, Asmaryan (bib24) 2021; 187 Lin, Huang, Wen, Liu (bib55) 2021; 130 Soille, Vogt (bib33) 2009; 30 Lin, Li (bib62) 2019; 46 Zhou, Wang, Cadenasso (bib20) 2017; 195 Coseo, Larsen (bib43) 2014; 125 Madanian, Soffianian, Koupai, Pourmanafi, Momeni (bib6) 2018; 190 Zhou, Huang, Pickett, Wang, Cadenasso, McPhearson, Grove, Wang (bib64) 2021; 4 Guo, Yang, Xiao, Xia, Jin, Li (bib21) 2020; 53 Zhang, Cao, Zhang, Cui, Cui, Du (bib16) 2022; 14 Kammuang-Lue, Sakulchangsatjatai, Sangnum, Terdtoon (bib44) 2015; 19 Kafy, Faisal, Al Rakib, Fattah, Rahaman, Sattar (bib15) 2022; 208 Yang, Sun, Ge, Li (bib12) 2017; vol. 22 Chen, Bai, Zhu, Yang, Dai (bib53) 2021; 12 Liu, Liang, Li, Xu, Ou, Chen, Li, Wang, Pei (bib23) 2017; 168 Li, Li, Liu, Hu, Wang, Wu (bib37) 2021; 325 Estoque, Ooba, Seposo, Togawa, Hijioka, Takahashi, Nakamura (bib1) 2020; 11 Zhang, Murray, Turner (bib25) 2017; 165 Mairota, Cafarelli, Boccaccio, Leronni, Labadessa, Kosmidou, Nagendra (bib34) 2013; 33 Holmes, Donkin, Witten (bib61) 1994 Dai, Chen, Yang (bib54) 2020; 11 Du, Xiong, Wang, Guo (bib56) 2016; 178 Yan, Guo, Li, Li, Qiu (bib50) 2020; 169 Peng, Liu, Xu, Lyu, Du, Qiao, Wu (bib11) 2020; 202 Wang, Liu, Tang, Wang (bib40) 2019; 110 Breiman (bib60) 2001; 45 He, Liu, Tian, Ma (bib3) 2014; 20 Liu, Li, Gao, Zhong (bib38) 2021; 87 Shi, Zhang (bib49) 2022; 214 Amani-Beni, Zhang, Xie, Shi (bib9) 2019; 11 Estoque, Murayama, Myint (bib26) 2017; 577 Asgarian, Amiri, Sakieh (bib13) 2015; 18 Yang, Huang, Li (bib59) 2017; 7 Rahimi, Barghjelveh, Dong (bib65) 2021; 45 Masoudi, Tan, Liew (bib7) 2019; 98 Kong, Sun, Liu, Yin, Jiang, Pu, Cavan, Skelhorn, Middel, Dronova (bib57) 2016; 183 Sun, Chen (bib19) 2017; 23 Chun, Guldmann (bib42) 2018; 71 Chen, Zhan, Du, Li, Li, Liu, Huang, Lai, Xia (bib48) 2022; 214 Di Leo, Escobedo, Dubbeling (bib52) 2016; 18 Liu, Pei, Wen, Li, Wang, Wu, Cai, Wu, Chen, Feng, Liu, Hubacek, Davis, Yuan, Yu, Liu (bib4) 2019; 10 Qiu, Zou, Li, Li, Guo, Yan, Tan (bib39) 2017; 68 Chen, Yao, Sun, Chen (bib14) 2014; 13 Peng, Jia, Liu, Li, Wu (bib8) 2018; 215 Saura, Bertzky, Bastin, Battistella, Mandrici, Dubois (bib32) 2019; 238 Ke, Men, Zhou, Li, Zhu (bib51) 2021; 62 Liu (10.1016/j.buildenv.2022.109910_bib4) 2019; 10 Soydan (10.1016/j.buildenv.2022.109910_bib58) 2020; 34 He (10.1016/j.buildenv.2022.109910_bib3) 2014; 20 Zhou (10.1016/j.buildenv.2022.109910_bib64) 2021; 4 Saura (10.1016/j.buildenv.2022.109910_bib32) 2019; 238 Asgarian (10.1016/j.buildenv.2022.109910_bib13) 2015; 18 Li (10.1016/j.buildenv.2022.109910_bib37) 2021; 325 Sun (10.1016/j.buildenv.2022.109910_bib66) 2018; 178 Masoudi (10.1016/j.buildenv.2022.109910_bib7) 2019; 98 Kafy (10.1016/j.buildenv.2022.109910_bib15) 2022; 208 Zhang (10.1016/j.buildenv.2022.109910_bib16) 2022; 14 Coseo (10.1016/j.buildenv.2022.109910_bib43) 2014; 125 Connors (10.1016/j.buildenv.2022.109910_bib10) 2013; 28 Guo (10.1016/j.buildenv.2022.109910_bib21) 2020; 53 Madanian (10.1016/j.buildenv.2022.109910_bib6) 2018; 190 Gong (10.1016/j.buildenv.2022.109910_bib41) 2019; 64 Estoque (10.1016/j.buildenv.2022.109910_bib26) 2017; 577 Kammuang-Lue (10.1016/j.buildenv.2022.109910_bib44) 2015; 19 Shi (10.1016/j.buildenv.2022.109910_bib49) 2022; 214 Maimaitiyiming (10.1016/j.buildenv.2022.109910_bib17) 2014; 89 Wickham (10.1016/j.buildenv.2022.109910_bib35) 2017; 25 Wang (10.1016/j.buildenv.2022.109910_bib40) 2019; 110 Holmes (10.1016/j.buildenv.2022.109910_bib61) 1994 Soille (10.1016/j.buildenv.2022.109910_bib33) 2009; 30 Lloyd (10.1016/j.buildenv.2022.109910_bib46) 2019; 3 Chen (10.1016/j.buildenv.2022.109910_bib14) 2014; 13 Kong (10.1016/j.buildenv.2022.109910_bib57) 2016; 183 Tepanosyan (10.1016/j.buildenv.2022.109910_bib24) 2021; 187 Lin (10.1016/j.buildenv.2022.109910_bib31) 2020; 129 Vogt (10.1016/j.buildenv.2022.109910_bib30) 2007; 22 Chen (10.1016/j.buildenv.2022.109910_bib36) 2019; 158 Yang (10.1016/j.buildenv.2022.109910_bib59) 2017; 7 Zhang (10.1016/j.buildenv.2022.109910_bib47) 2020; 7 Zhang (10.1016/j.buildenv.2022.109910_bib25) 2017; 165 Silva (10.1016/j.buildenv.2022.109910_bib18) 2018; 136 Yan (10.1016/j.buildenv.2022.109910_bib50) 2020; 169 Peng (10.1016/j.buildenv.2022.109910_bib8) 2018; 215 Peng (10.1016/j.buildenv.2022.109910_bib11) 2020; 202 Ke (10.1016/j.buildenv.2022.109910_bib51) 2021; 62 Lin (10.1016/j.buildenv.2022.109910_bib62) 2019; 46 Li (10.1016/j.buildenv.2022.109910_bib27) 2019; 41 Liu (10.1016/j.buildenv.2022.109910_bib22) 2020; 2020 Masoudi (10.1016/j.buildenv.2022.109910_bib63) 2021; 35 Chun (10.1016/j.buildenv.2022.109910_bib42) 2018; 71 Estoque (10.1016/j.buildenv.2022.109910_bib1) 2020; 11 Mairota (10.1016/j.buildenv.2022.109910_bib34) 2013; 33 Feng (10.1016/j.buildenv.2022.109910_bib2) 2020; 263 Yang (10.1016/j.buildenv.2022.109910_bib12) 2017; vol. 22 Amani-Beni (10.1016/j.buildenv.2022.109910_bib9) 2019; 11 Srivanit (10.1016/j.buildenv.2022.109910_bib28) 2019; 191 Qiu (10.1016/j.buildenv.2022.109910_bib39) 2017; 68 Sun (10.1016/j.buildenv.2022.109910_bib19) 2017; 23 Liu (10.1016/j.buildenv.2022.109910_bib38) 2021; 87 Wu (10.1016/j.buildenv.2022.109910_bib45) 2020; 117 Kong (10.1016/j.buildenv.2022.109910_bib5) 2014; 13 Liu (10.1016/j.buildenv.2022.109910_bib23) 2017; 168 Di Leo (10.1016/j.buildenv.2022.109910_bib52) 2016; 18 Dai (10.1016/j.buildenv.2022.109910_bib54) 2020; 11 Yu (10.1016/j.buildenv.2022.109910_bib29) 2017; 82 Breiman (10.1016/j.buildenv.2022.109910_bib60) 2001; 45 Lin (10.1016/j.buildenv.2022.109910_bib55) 2021; 130 Rahimi (10.1016/j.buildenv.2022.109910_bib65) 2021; 45 Chen (10.1016/j.buildenv.2022.109910_bib53) 2021; 12 Du (10.1016/j.buildenv.2022.109910_bib56) 2016; 178 Chen (10.1016/j.buildenv.2022.109910_bib48) 2022; 214 Zhou (10.1016/j.buildenv.2022.109910_bib20) 2017; 195 |
| References_xml | – volume: 110 start-page: 168 year: 2019 end-page: 175 ident: bib40 article-title: Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China publication-title: Phys. Chem. Earth – volume: 18 start-page: 373 year: 2016 end-page: 392 ident: bib52 article-title: The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso, Burkina Faso publication-title: Environ. Dev. Sustain. – volume: 238 year: 2019 ident: bib32 article-title: Global trends in protected area connectivity from 2010 to 2018 publication-title: Biol. Conserv. – volume: 11 start-page: 190 year: 2020 end-page: 202 ident: bib54 article-title: Spatiotemporal variations of PM2.5 concentration at the neighborhood level in five Chinese megacities publication-title: Atmos. Pollut. Res. – volume: 34 year: 2020 ident: bib58 article-title: Effects of landscape composition and patterns on land surface temperature: urban heat island case study for Nigde, Turkey publication-title: Urban Clim. – volume: 195 start-page: 1 year: 2017 end-page: 12 ident: bib20 article-title: Effects of the spatial configuration of trees on urban heat mitigation: a comparative study publication-title: Rem. Sens. Environ. – volume: 25 start-page: 894 year: 2017 end-page: 902 ident: bib35 article-title: An inventory of continental U.S. terrestrial candidate ecological restoration areas based on landscape context publication-title: Restor. Ecol. – volume: 125 start-page: 117 year: 2014 end-page: 129 ident: bib43 article-title: How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago publication-title: Landsc. Urban Plann. – volume: 20 start-page: 2886 year: 2014 end-page: 2902 ident: bib3 article-title: Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective publication-title: Global Change Biol. – volume: 62 year: 2021 ident: bib51 article-title: Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: a case study in Wuhan publication-title: Urban For. Urban Green. – volume: 22 start-page: 171 year: 2007 end-page: 177 ident: bib30 article-title: Mapping spatial patterns with morphological image processing publication-title: Landsc. Ecol. – volume: 183 start-page: 1428 year: 2016 end-page: 1440 ident: bib57 article-title: Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer publication-title: Appl. Energy – volume: 12 year: 2021 ident: bib53 article-title: The influence of neighborhood-level urban morphology on PM2.5 variation based on random forest regression publication-title: Atmos. Pollut. Res. – volume: 191 start-page: 580 year: 2019 ident: bib28 article-title: Spatial patterns of greenspace cool islands and their relationship to cooling effectiveness in the tropical city of Chiang Mai, Thailand publication-title: Environ. Monit. Assess. – volume: 7 year: 2020 ident: bib47 article-title: An empirical algorithm for retrieving land surface temperature from AMSR-E data considering the comprehensive effects of environmental variables publication-title: Earth Space Sci. – volume: 98 start-page: 200 year: 2019 end-page: 213 ident: bib7 article-title: Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities publication-title: Ecol. Indicat. – volume: 11 start-page: 1581 year: 2020 ident: bib1 article-title: Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators publication-title: Nat. Commun. – volume: 577 start-page: 349 year: 2017 end-page: 359 ident: bib26 article-title: Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia publication-title: Sci. Total Environ. – volume: 208 year: 2022 ident: bib15 article-title: Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh publication-title: Build. Environ. – volume: 214 year: 2022 ident: bib49 article-title: Urban morphological indicators of urban heat and moisture islands under various sky conditions in a humid subtropical region publication-title: Build. Environ. – volume: 82 start-page: 152 year: 2017 end-page: 162 ident: bib29 article-title: How can urban green spaces be planned for climate adaptation in subtropical cities? publication-title: Ecol. Indicat. – volume: 263 year: 2020 ident: bib2 article-title: Spatially-explicit modeling and intensity analysis of China's land use change 2000–2050 publication-title: J. Environ. Manag. – volume: 165 start-page: 162 year: 2017 end-page: 171 ident: bib25 article-title: Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona publication-title: Landsc. Urban Plann. – volume: 35 year: 2021 ident: bib63 article-title: The effects of land use on spatial pattern of urban green spaces and their cooling ability publication-title: Urban Clim. – volume: 14 start-page: 4530 year: 2022 ident: bib16 article-title: Responses of urban wetland to climate change and human activities in Beijing: a case study of Hanshiqiao wetland publication-title: Sustainability – volume: 168 start-page: 94 year: 2017 end-page: 116 ident: bib23 article-title: A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects publication-title: Landsc. Urban Plann. – volume: 158 start-page: 1 year: 2019 end-page: 15 ident: bib36 article-title: Effects of urban green space morphological pattern on variation of PM2.5 concentration in the neighborhoods of five Chinese megacities publication-title: Build. Environ. – volume: 28 start-page: 271 year: 2013 end-page: 283 ident: bib10 article-title: Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona publication-title: Landsc. Ecol. – volume: 13 start-page: 846 year: 2014 end-page: 853 ident: bib5 article-title: A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale publication-title: Urban For. Urban Green. – volume: 10 start-page: 5558 year: 2019 ident: bib4 article-title: Global urban expansion offsets climate-driven increases in terrestrial net primary productivity publication-title: Nat. Commun. – volume: 129 year: 2020 ident: bib31 article-title: What is the influence of landscape metric selection on the calibration of land-use/cover simulation models? publication-title: Environ. Model. Software – volume: 68 start-page: 30 year: 2017 end-page: 42 ident: bib39 article-title: Experimental studies on the effects of green space and evapotranspiration on urban heat island in a subtropical megacity in China publication-title: Habitat Int. – volume: 64 start-page: 370 year: 2019 end-page: 373 ident: bib41 article-title: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 publication-title: Sci. Bull. – volume: 214 year: 2022 ident: bib48 article-title: Seasonally disparate responses of surface thermal environment to 2D/3D urban morphology publication-title: Build. Environ. – volume: 136 start-page: 279 year: 2018 end-page: 292 ident: bib18 article-title: Spatiotemporal impact of land use/land cover changes on urban heat islands: a case study of Paço do Lumiar, Brazil publication-title: Build. Environ. – volume: 46 year: 2019 ident: bib62 article-title: Large-scale ecological red line planning in urban agglomerations using a semi-automatic intelligent zoning method publication-title: Sustain. Cities Soc. – volume: 215 start-page: 255 year: 2018 end-page: 267 ident: bib8 article-title: Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas publication-title: Rem. Sens. Environ. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib60 article-title: Random forests publication-title: Mach. Learn. – volume: 178 start-page: 43 year: 2018 end-page: 50 ident: bib66 article-title: A landscape connectivity model to quantify contributions of heat sources and sinks in urban regions publication-title: Landsc. Urban Plann. – volume: 178 start-page: 84 year: 2016 end-page: 92 ident: bib56 article-title: Quantifying the multilevel effects of landscape composition and configuration on land surface temperature publication-title: Rem. Sens. Environ. – volume: 45 start-page: 22 year: 2021 ident: bib65 article-title: Quantifying how urban landscape heterogeneity affects land surface temperature at multiple scales publication-title: J. Ecol. Environ. – volume: 87 start-page: 81 year: 2021 end-page: 89 ident: bib38 article-title: Monitoring the spatiotemporal dynamics of urban green space and its impacts on thermal environment in Shenzhen city from 1978 to 2018 with remote sensing data publication-title: Photogramm. Eng. Rem. Sens. – volume: 2020 year: 2020 ident: bib22 article-title: Impervious surface expansion: a key indicator for environment and urban agglomeration—a case study of Guangdong-Hong Kong-Macao greater Bay area by using Landsat data publication-title: J. Sens. – volume: 19 start-page: 445 year: 2015 end-page: 455 ident: bib44 article-title: Influences of population, building, and traffic densities on urban heat island intensity in Chiang Mai City, Thailand publication-title: Therm. Sci. – volume: 130 year: 2021 ident: bib55 article-title: An assessment framework for improving protected areas based on morphological spatial pattern analysis and graph-based indicators publication-title: Ecol. Indicat. – volume: 187 year: 2021 ident: bib24 article-title: Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia publication-title: Build. Environ. – volume: 18 start-page: 209 year: 2015 end-page: 222 ident: bib13 article-title: Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach publication-title: Urban Ecosyst. – volume: 202 year: 2020 ident: bib11 article-title: How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold publication-title: Landsc. Urban Plann. – volume: 7 start-page: 9337 year: 2017 ident: bib59 article-title: Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China publication-title: Sci. Rep. – volume: 4 start-page: 1764 year: 2021 end-page: 1775 ident: bib64 article-title: Urban tree canopy has greater cooling effects in socially vulnerable communities in the US publication-title: One Earth – volume: 71 start-page: 165 year: 2018 end-page: 176 ident: bib42 article-title: Impact of greening on the urban heat island: seasonal variations and mitigation strategies publication-title: Comput. Environ. Urban Syst. – volume: 89 start-page: 59 year: 2014 end-page: 66 ident: bib17 article-title: Effects of green space spatial pattern on land surface temperature: implications for sustainable urban planning and climate change adaptation publication-title: ISPRS J. Photogrammetry Remote Sens. – volume: 23 start-page: 38 year: 2017 end-page: 46 ident: bib19 article-title: Effects of green space dynamics on urban heat islands: mitigation and diversification publication-title: Ecosyst. Serv. – volume: 169 year: 2020 ident: bib50 article-title: Quantifying the cooling effect of urban vegetation by mobile traverse method: a local-scale urban heat island study in a subtropical megacity publication-title: Build. Environ. – start-page: 357 year: 1994 end-page: 361 ident: bib61 article-title: WEKA: a machine learning workbench publication-title: Proceedings of ANZIIS '94 - Australian New Zealnd Intelligent Information Systems Conference. IEEE, Brisbane, Australia – volume: 13 start-page: 646 year: 2014 end-page: 654 ident: bib14 article-title: Effect of urban green patterns on surface urban cool islands and its seasonal variations publication-title: Urban For. Urban Green. – volume: 53 year: 2020 ident: bib21 article-title: Influences of urban spatial form on urban heat island effects at the community level in China publication-title: Sustain. Cities Soc. – volume: 11 start-page: 513 year: 2019 ident: bib9 article-title: Impacts of urban green landscape patterns on land surface temperature: evidence from the adjacent area of Olympic forest Park of Beijing, China publication-title: Sustainability – volume: 117 year: 2020 ident: bib45 article-title: Seasonal variations and main influencing factors of the water cooling islands effect in Shenzhen publication-title: Ecol. Indicat. – volume: vol. 22 start-page: 1 year: 2017 end-page: 10 ident: bib12 publication-title: Assessing the Impacts of Urbanization-Associated Green Space on Urban Land Surface Temperature: A Case Study of Dalian, China – volume: 41 start-page: 255 year: 2019 end-page: 263 ident: bib27 article-title: Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: extending understanding from local to the city scale publication-title: Urban For. Urban Green. – volume: 33 start-page: 82 year: 2013 end-page: 95 ident: bib34 article-title: Using landscape structure to develop quantitative baselines for protected area monitoring publication-title: Ecol. Indicat. – volume: 30 start-page: 456 year: 2009 end-page: 459 ident: bib33 article-title: Morphological segmentation of binary patterns publication-title: Pattern Recogn. Lett. – volume: 325 year: 2021 ident: bib37 article-title: Multiscale analysis of the effects of urban green infrastructure landscape patterns on PM2.5 concentrations in an area of rapid urbanization publication-title: J. Clean. Prod. – volume: 3 start-page: 108 year: 2019 end-page: 139 ident: bib46 article-title: Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets publication-title: Big Earth Data – volume: 190 start-page: 189 year: 2018 ident: bib6 article-title: Analyzing the effects of urban expansion on land surface temperature patterns by landscape metrics: a case study of Isfahan city, Iran publication-title: Environ. Monit. Assess. – volume: 214 year: 2022 ident: 10.1016/j.buildenv.2022.109910_bib48 article-title: Seasonally disparate responses of surface thermal environment to 2D/3D urban morphology publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.108928 – volume: 11 start-page: 190 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib54 article-title: Spatiotemporal variations of PM2.5 concentration at the neighborhood level in five Chinese megacities publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2020.03.010 – volume: 238 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib32 article-title: Global trends in protected area connectivity from 2010 to 2018 publication-title: Biol. Conserv. doi: 10.1016/j.biocon.2019.07.028 – volume: 202 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib11 article-title: How to effectively mitigate urban heat island effect? A perspective of waterbody patch size threshold publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2020.103873 – volume: 45 start-page: 22 year: 2021 ident: 10.1016/j.buildenv.2022.109910_bib65 article-title: Quantifying how urban landscape heterogeneity affects land surface temperature at multiple scales publication-title: J. Ecol. Environ. doi: 10.1186/s41610-021-00203-z – volume: 2020 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib22 article-title: Impervious surface expansion: a key indicator for environment and urban agglomeration—a case study of Guangdong-Hong Kong-Macao greater Bay area by using Landsat data publication-title: J. Sens. doi: 10.1155/2020/3896589 – volume: 4 start-page: 1764 year: 2021 ident: 10.1016/j.buildenv.2022.109910_bib64 article-title: Urban tree canopy has greater cooling effects in socially vulnerable communities in the US publication-title: One Earth doi: 10.1016/j.oneear.2021.11.010 – volume: 89 start-page: 59 year: 2014 ident: 10.1016/j.buildenv.2022.109910_bib17 article-title: Effects of green space spatial pattern on land surface temperature: implications for sustainable urban planning and climate change adaptation publication-title: ISPRS J. Photogrammetry Remote Sens. doi: 10.1016/j.isprsjprs.2013.12.010 – volume: 169 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib50 article-title: Quantifying the cooling effect of urban vegetation by mobile traverse method: a local-scale urban heat island study in a subtropical megacity publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.106541 – volume: 168 start-page: 94 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib23 article-title: A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2017.09.019 – volume: 22 start-page: 171 year: 2007 ident: 10.1016/j.buildenv.2022.109910_bib30 article-title: Mapping spatial patterns with morphological image processing publication-title: Landsc. Ecol. doi: 10.1007/s10980-006-9013-2 – volume: 11 start-page: 513 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib9 article-title: Impacts of urban green landscape patterns on land surface temperature: evidence from the adjacent area of Olympic forest Park of Beijing, China publication-title: Sustainability doi: 10.3390/su11020513 – volume: 7 start-page: 9337 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib59 article-title: Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China publication-title: Sci. Rep. doi: 10.1038/s41598-017-09628-w – volume: 18 start-page: 209 year: 2015 ident: 10.1016/j.buildenv.2022.109910_bib13 article-title: Assessing the effect of green cover spatial patterns on urban land surface temperature using landscape metrics approach publication-title: Urban Ecosyst. doi: 10.1007/s11252-014-0387-7 – volume: 13 start-page: 846 year: 2014 ident: 10.1016/j.buildenv.2022.109910_bib5 article-title: A satellite image-based analysis of factors contributing to the green-space cool island intensity on a city scale publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2014.09.009 – volume: 19 start-page: 445 year: 2015 ident: 10.1016/j.buildenv.2022.109910_bib44 article-title: Influences of population, building, and traffic densities on urban heat island intensity in Chiang Mai City, Thailand publication-title: Therm. Sci. doi: 10.2298/TSCI150214085K – volume: 191 start-page: 580 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib28 article-title: Spatial patterns of greenspace cool islands and their relationship to cooling effectiveness in the tropical city of Chiang Mai, Thailand publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-019-7749-9 – volume: 178 start-page: 84 year: 2016 ident: 10.1016/j.buildenv.2022.109910_bib56 article-title: Quantifying the multilevel effects of landscape composition and configuration on land surface temperature publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2016.02.063 – volume: 325 year: 2021 ident: 10.1016/j.buildenv.2022.109910_bib37 article-title: Multiscale analysis of the effects of urban green infrastructure landscape patterns on PM2.5 concentrations in an area of rapid urbanization publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.129324 – volume: 3 start-page: 108 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib46 article-title: Global spatio-temporally harmonised datasets for producing high-resolution gridded population distribution datasets publication-title: Big Earth Data doi: 10.1080/20964471.2019.1625151 – volume: 46 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib62 article-title: Large-scale ecological red line planning in urban agglomerations using a semi-automatic intelligent zoning method publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2018.12.038 – volume: 577 start-page: 349 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib26 article-title: Effects of landscape composition and pattern on land surface temperature: an urban heat island study in the megacities of Southeast Asia publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.10.195 – volume: 11 start-page: 1581 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib1 article-title: Heat health risk assessment in Philippine cities using remotely sensed data and social-ecological indicators publication-title: Nat. Commun. doi: 10.1038/s41467-020-15218-8 – volume: 41 start-page: 255 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib27 article-title: Optimizing urban greenspace spatial pattern to mitigate urban heat island effects: extending understanding from local to the city scale publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2019.04.008 – volume: 214 year: 2022 ident: 10.1016/j.buildenv.2022.109910_bib49 article-title: Urban morphological indicators of urban heat and moisture islands under various sky conditions in a humid subtropical region publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.108906 – volume: 18 start-page: 373 year: 2016 ident: 10.1016/j.buildenv.2022.109910_bib52 article-title: The role of urban green infrastructure in mitigating land surface temperature in Bobo-Dioulasso, Burkina Faso publication-title: Environ. Dev. Sustain. doi: 10.1007/s10668-015-9653-y – volume: 25 start-page: 894 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib35 article-title: An inventory of continental U.S. terrestrial candidate ecological restoration areas based on landscape context publication-title: Restor. Ecol. doi: 10.1111/rec.12522 – volume: 215 start-page: 255 year: 2018 ident: 10.1016/j.buildenv.2022.109910_bib8 article-title: Seasonal contrast of the dominant factors for spatial distribution of land surface temperature in urban areas publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2018.06.010 – volume: 178 start-page: 43 year: 2018 ident: 10.1016/j.buildenv.2022.109910_bib66 article-title: A landscape connectivity model to quantify contributions of heat sources and sinks in urban regions publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2018.05.015 – volume: vol. 22 start-page: 1 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib12 – volume: 158 start-page: 1 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib36 article-title: Effects of urban green space morphological pattern on variation of PM2.5 concentration in the neighborhoods of five Chinese megacities publication-title: Build. Environ. doi: 10.1016/j.buildenv.2019.04.058 – volume: 68 start-page: 30 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib39 article-title: Experimental studies on the effects of green space and evapotranspiration on urban heat island in a subtropical megacity in China publication-title: Habitat Int. doi: 10.1016/j.habitatint.2017.07.009 – volume: 82 start-page: 152 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib29 article-title: How can urban green spaces be planned for climate adaptation in subtropical cities? publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2017.07.002 – volume: 110 start-page: 168 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib40 article-title: Remote sensing image-based analysis of the urban heat island effect in Shenzhen, China publication-title: Phys. Chem. Earth doi: 10.1016/j.pce.2019.01.002 – volume: 190 start-page: 189 year: 2018 ident: 10.1016/j.buildenv.2022.109910_bib6 article-title: Analyzing the effects of urban expansion on land surface temperature patterns by landscape metrics: a case study of Isfahan city, Iran publication-title: Environ. Monit. Assess. doi: 10.1007/s10661-018-6564-z – volume: 62 year: 2021 ident: 10.1016/j.buildenv.2022.109910_bib51 article-title: Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: a case study in Wuhan publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2021.127159 – volume: 183 start-page: 1428 year: 2016 ident: 10.1016/j.buildenv.2022.109910_bib57 article-title: Energy saving potential of fragmented green spaces due to their temperature regulating ecosystem services in the summer publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.09.070 – volume: 34 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib58 article-title: Effects of landscape composition and patterns on land surface temperature: urban heat island case study for Nigde, Turkey publication-title: Urban Clim. doi: 10.1016/j.uclim.2020.100688 – volume: 28 start-page: 271 year: 2013 ident: 10.1016/j.buildenv.2022.109910_bib10 article-title: Landscape configuration and urban heat island effects: assessing the relationship between landscape characteristics and land surface temperature in Phoenix, Arizona publication-title: Landsc. Ecol. doi: 10.1007/s10980-012-9833-1 – volume: 187 year: 2021 ident: 10.1016/j.buildenv.2022.109910_bib24 article-title: Studying spatial-temporal changes and relationship of land cover and surface Urban Heat Island derived through remote sensing in Yerevan, Armenia publication-title: Build. Environ. doi: 10.1016/j.buildenv.2020.107390 – volume: 23 start-page: 38 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib19 article-title: Effects of green space dynamics on urban heat islands: mitigation and diversification publication-title: Ecosyst. Serv. doi: 10.1016/j.ecoser.2016.11.011 – volume: 129 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib31 article-title: What is the influence of landscape metric selection on the calibration of land-use/cover simulation models? publication-title: Environ. Model. Software doi: 10.1016/j.envsoft.2020.104719 – volume: 30 start-page: 456 year: 2009 ident: 10.1016/j.buildenv.2022.109910_bib33 article-title: Morphological segmentation of binary patterns publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2008.10.015 – volume: 87 start-page: 81 year: 2021 ident: 10.1016/j.buildenv.2022.109910_bib38 article-title: Monitoring the spatiotemporal dynamics of urban green space and its impacts on thermal environment in Shenzhen city from 1978 to 2018 with remote sensing data publication-title: Photogramm. Eng. Rem. Sens. doi: 10.14358/PERS.87.2.81 – volume: 208 year: 2022 ident: 10.1016/j.buildenv.2022.109910_bib15 article-title: Impact of vegetation cover loss on surface temperature and carbon emission in a fastest-growing city, Cumilla, Bangladesh publication-title: Build. Environ. doi: 10.1016/j.buildenv.2021.108573 – volume: 195 start-page: 1 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib20 article-title: Effects of the spatial configuration of trees on urban heat mitigation: a comparative study publication-title: Rem. Sens. Environ. doi: 10.1016/j.rse.2017.03.043 – volume: 13 start-page: 646 year: 2014 ident: 10.1016/j.buildenv.2022.109910_bib14 article-title: Effect of urban green patterns on surface urban cool islands and its seasonal variations publication-title: Urban For. Urban Green. doi: 10.1016/j.ufug.2014.07.006 – volume: 53 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib21 article-title: Influences of urban spatial form on urban heat island effects at the community level in China publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101972 – start-page: 357 year: 1994 ident: 10.1016/j.buildenv.2022.109910_bib61 article-title: WEKA: a machine learning workbench – volume: 130 year: 2021 ident: 10.1016/j.buildenv.2022.109910_bib55 article-title: An assessment framework for improving protected areas based on morphological spatial pattern analysis and graph-based indicators publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2021.108138 – volume: 136 start-page: 279 year: 2018 ident: 10.1016/j.buildenv.2022.109910_bib18 article-title: Spatiotemporal impact of land use/land cover changes on urban heat islands: a case study of Paço do Lumiar, Brazil publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.03.041 – volume: 7 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib47 article-title: An empirical algorithm for retrieving land surface temperature from AMSR-E data considering the comprehensive effects of environmental variables publication-title: Earth Space Sci. doi: 10.1029/2019EA001006 – volume: 125 start-page: 117 year: 2014 ident: 10.1016/j.buildenv.2022.109910_bib43 article-title: How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban Heat Islands in Chicago publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2014.02.019 – volume: 10 start-page: 5558 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib4 article-title: Global urban expansion offsets climate-driven increases in terrestrial net primary productivity publication-title: Nat. Commun. doi: 10.1038/s41467-019-13462-1 – volume: 98 start-page: 200 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib7 article-title: Multi-city comparison of the relationships between spatial pattern and cooling effect of urban green spaces in four major Asian cities publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2018.09.058 – volume: 64 start-page: 370 year: 2019 ident: 10.1016/j.buildenv.2022.109910_bib41 article-title: Stable classification with limited sample: transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.03.002 – volume: 45 start-page: 5 year: 2001 ident: 10.1016/j.buildenv.2022.109910_bib60 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 12 year: 2021 ident: 10.1016/j.buildenv.2022.109910_bib53 article-title: The influence of neighborhood-level urban morphology on PM2.5 variation based on random forest regression publication-title: Atmos. Pollut. Res. doi: 10.1016/j.apr.2021.101147 – volume: 117 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib45 article-title: Seasonal variations and main influencing factors of the water cooling islands effect in Shenzhen publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2020.106699 – volume: 35 year: 2021 ident: 10.1016/j.buildenv.2022.109910_bib63 article-title: The effects of land use on spatial pattern of urban green spaces and their cooling ability publication-title: Urban Clim. doi: 10.1016/j.uclim.2020.100743 – volume: 263 year: 2020 ident: 10.1016/j.buildenv.2022.109910_bib2 article-title: Spatially-explicit modeling and intensity analysis of China's land use change 2000–2050 publication-title: J. Environ. Manag. doi: 10.1016/j.jenvman.2020.110407 – volume: 20 start-page: 2886 year: 2014 ident: 10.1016/j.buildenv.2022.109910_bib3 article-title: Urban expansion dynamics and natural habitat loss in China: a multiscale landscape perspective publication-title: Global Change Biol. doi: 10.1111/gcb.12553 – volume: 165 start-page: 162 year: 2017 ident: 10.1016/j.buildenv.2022.109910_bib25 article-title: Optimizing green space locations to reduce daytime and nighttime urban heat island effects in Phoenix, Arizona publication-title: Landsc. Urban Plann. doi: 10.1016/j.landurbplan.2017.04.009 – volume: 33 start-page: 82 year: 2013 ident: 10.1016/j.buildenv.2022.109910_bib34 article-title: Using landscape structure to develop quantitative baselines for protected area monitoring publication-title: Ecol. Indicat. doi: 10.1016/j.ecolind.2012.08.017 – volume: 14 start-page: 4530 year: 2022 ident: 10.1016/j.buildenv.2022.109910_bib16 article-title: Responses of urban wetland to climate change and human activities in Beijing: a case study of Hanshiqiao wetland publication-title: Sustainability doi: 10.3390/su14084530 – volume: 71 start-page: 165 year: 2018 ident: 10.1016/j.buildenv.2022.109910_bib42 article-title: Impact of greening on the urban heat island: seasonal variations and mitigation strategies publication-title: Comput. Environ. Urban Syst. doi: 10.1016/j.compenvurbsys.2018.05.006 |
| SSID | ssj0016934 |
| Score | 2.6714437 |
| Snippet | Land use pattern can substantially shape urban thermal environment. Although previous studies have shown that urban heat island (UHI) intensity will be easily... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109910 |
| SubjectTerms | Environmental planning Green space Machine learning Morphological spatial pattern analysis Urban heat island |
| Title | Measuring the relationship between morphological spatial pattern of green space and urban heat island using machine learning methods |
| URI | https://dx.doi.org/10.1016/j.buildenv.2022.109910 |
| Volume | 228 |
| WOSCitedRecordID | wos000906312200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-684X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016934 issn: 0360-1323 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlgMcEE-1vDQHbsjFWTv27rFCRYBExSFIgYvltdfFUepUSVyl9_6T_lFm9uE4UFF64GJFG-0ku_NlMjv7zQxjb3gRaqqiHkQRL4O4DGUgShUGuhKFFCoZVoltNpEeH4vJRH4dDK58Lsz5LG0asV7Ls_-qahxDZVPq7C3U3QnFAXyNSscnqh2f_6T4Lybq57OgFp7s1idlnc5xdzurtyRSNSVkmVKbxn08ITYOveHSCdqFQjtAdvttvZyZERNjODVUTO17T5y4htTLrati13jbCOrl1XVUINcPrG4u8nkXh61byxmq1-0Gv2MbrZ3U7bQ3-uNn64Le3_ML3Q9jcCJxBTaRs0vfCgM8Gkd908xd4rg1rnSJZzmwf9h9G4KYHihaEi4FD_6cH2wmbBfa_u0PsKMlesbbNPNyMpKTWTl32C5PRxJN5-7hp6PJ5-6yKpGRq1JmV9BLRL_-G13vA_X8mvFD9sAdSODQAukRG-jmMbvfK1P5hF12kAKEFPQhBQ5SsAUpcJACBymYV2AgBQZSgEgAAykgSIGFFBhIgYMUeEiBg9RT9u3D0fj9x8B17wgKdPtWQRpSs8eh4lKkURXFKi8kFZxLpBrqUAlZKD1KcqprinsmwnIoqzAuRhEXEv36MnrGdpp5o_cYJBWlY3Je5VLEVI1K0vVvoqIcfatY8n028vuZFa60PXVYmWV_1-g-e9fNO7PFXW6cIb26MueiWtczQyTeMPf5rT_tBbu3-am8ZDurRatfsbvF-apeLl47GP4C-ju6uA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Measuring+the+relationship+between+morphological+spatial+pattern+of+green+space+and+urban+heat+island+using+machine+learning+methods&rft.jtitle=Building+and+environment&rft.au=Lin%2C+Jinyao&rft.au=Qiu%2C+Suixuan&rft.au=Tan%2C+Xiujuan&rft.au=Zhuang%2C+Yaye&rft.date=2023-01-15&rft.issn=0360-1323&rft.volume=228&rft.spage=109910&rft_id=info:doi/10.1016%2Fj.buildenv.2022.109910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2022_109910 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |