Scaled-PAKKT sequential optimality condition for multiobjective problems and its application to an Augmented Lagrangian method

Based on the recently introduced Scaled Positive Approximate Karush–Kuhn–Tucker condition for single objective problems, we derive a sequential necessary optimality condition for multiobjective problems with equality and inequality constraints as well as additional abstract set constraints. These ne...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational optimization and applications Ročník 89; číslo 3; s. 769 - 803
Hlavní autoři: Carrizo, G. A., Fazzio, N. S., Sánchez, M. D., Schuverdt, M. L.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Springer US 01.12.2024
Témata:
ISSN:0926-6003, 1573-2894
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Based on the recently introduced Scaled Positive Approximate Karush–Kuhn–Tucker condition for single objective problems, we derive a sequential necessary optimality condition for multiobjective problems with equality and inequality constraints as well as additional abstract set constraints. These necessary sequential optimality conditions for multiobjective problems are subject to the same requirements as ordinary (pointwise) optimization conditions: we show that the updated Scaled Positive Approximate Karush–Kuhn–Tucker condition is necessary for a local weak Pareto point to the problem. Furthermore, we propose a variant of the classical Augmented Lagrangian method for multiobjective problems. Our theoretical framework does not require any scalarization. We also discuss the convergence properties of our algorithm with regard to feasibility and global optimality without any convexity assumption. Finally, some numerical results are given to illustrate the practical viability of the method.
ISSN:0926-6003
1573-2894
DOI:10.1007/s10589-024-00605-4