On the monotonicity of left and right Riemann sums

This paper is dedicated to proving general theorems about the monotonicity of left and right Riemann sums, a problem first raised by Fejér in 1950. We provide a much-needed review of the literature on the problem and offer several new sufficient and necessary conditions for the monotonicity of Riema...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sampling theory, signal processing, and data analysis Jg. 22; H. 1
1. Verfasser: Bouthat, Ludovick
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cham Springer International Publishing 01.06.2024
Schlagworte:
ISSN:2730-5716, 2730-5724
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper is dedicated to proving general theorems about the monotonicity of left and right Riemann sums, a problem first raised by Fejér in 1950. We provide a much-needed review of the literature on the problem and offer several new sufficient and necessary conditions for the monotonicity of Riemann sums. Additionally, we present a new insightful proof of a fundamental theorem related to these sums using tools from the theory of majorization. Lastly, we delve deeper into a question posed by Borwein, almost resolving it completely.
AbstractList This paper is dedicated to proving general theorems about the monotonicity of left and right Riemann sums, a problem first raised by Fejér in 1950. We provide a much-needed review of the literature on the problem and offer several new sufficient and necessary conditions for the monotonicity of Riemann sums. Additionally, we present a new insightful proof of a fundamental theorem related to these sums using tools from the theory of majorization. Lastly, we delve deeper into a question posed by Borwein, almost resolving it completely.
ArticleNumber 14
Author Bouthat, Ludovick
Author_xml – sequence: 1
  givenname: Ludovick
  orcidid: 0000-0002-2094-3028
  surname: Bouthat
  fullname: Bouthat, Ludovick
  email: ludovick.bouthat.1@ulaval.ca
  organization: Département de mathématiques et de statistique, Université Laval
BookMark eNp9j81KAzEUhYNUsNa-gKu8QDR_k2SWUvyDQkF0HTKZm3ZKJ5EkXfTtHa24dHXu4nyX812jWUwRELpl9I5Rqu-LFEpTQrkklFJjiLlAc64FJY3mcvZ3M3WFlqXspxJvNKVKzBHfRFx3gMcUU01x8EM94RTwAULFLvY4D9tdxW8DjC5GXI5juUGXwR0KLH9zgT6eHt9XL2S9eX5dPayJ55JX0oAxLuimV053DUjudac65yTwXnJoTRs8aKmDgk4wDkyH0LetNNoEE6QXC8TPf31OpWQI9jMPo8sny6j9FrdncTuJ2x9xayZInKEyleMWst2nY47Tzv-oL5jhXP4
Cites_doi 10.5556/j.tkjm.31.2000.396
10.1007/978-3-7643-8773-0_17
10.1007/BF01146937
10.7153/jmi-01-47
10.21136/CPMF.1950.123879
10.1017/S0013091500011214
10.1006/jmaa.2000.7087
10.1006/jmaa.1993.1358
10.1007/978-3-031-21460-8_3
10.14321/realanalexch.35.1.0043
10.5486/PMD.1961.8.3-4.10
10.7153/mia-06-22
10.2307/3618705
10.1007/s00009-014-0440-z
10.1007/978-0-387-68276-1
10.1007/978-3-030-36568-4_2
10.1016/0024-3795(83)80011-1
10.1017/CBO9780511701825
10.1007/s13373-014-0057-3
10.4064/sm181217-30-1
10.1515/spma-2023-0113
10.2307/3618015
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature Switzerland AG 2024. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
DBID AAYXX
CITATION
DOI 10.1007/s43670-024-00088-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2730-5724
ExternalDocumentID 10_1007_s43670_024_00088_8
GrantInformation_xml – fundername: Vanier Canada Graduate Scholarships
GroupedDBID 406
AACDK
AAHNG
AAJBT
AASML
AATNV
ABAKF
ABECU
ABJNI
ABMQK
ABTEG
ABTKH
ACAOD
ACDTI
ACHSB
ACPIV
ACZOJ
ADTPH
AEFQL
AEMSY
AESKC
AFBBN
AFQWF
AGMZJ
AGQEE
AIGIU
ALMA_UNASSIGNED_HOLDINGS
AMXSW
AMYLF
DPUIP
EBLON
FIGPU
IKXTQ
IWAJR
JZLTJ
LLZTM
NPVJJ
NQJWS
ROL
RSV
SJYHP
SNE
SOJ
SRMVM
SSLCW
AAUYE
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
KOV
ID FETCH-LOGICAL-c242t-5e88af75d6a7b5e42c7b6baa4e2d42e989fce747f6eb312e17ffd994878f8f4c3
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001278993000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2730-5716
IngestDate Sat Nov 29 03:38:49 EST 2025
Fri Feb 21 02:39:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 26A42
Monotone sequences
Riemann sums
26A48
Interpolation in approximation theory
41A05
26D15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c242t-5e88af75d6a7b5e42c7b6baa4e2d42e989fce747f6eb312e17ffd994878f8f4c3
ORCID 0000-0002-2094-3028
ParticipantIDs crossref_primary_10_1007_s43670_024_00088_8
springer_journals_10_1007_s43670_024_00088_8
PublicationCentury 2000
PublicationDate 20240600
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 6
  year: 2024
  text: 20240600
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
PublicationTitle Sampling theory, signal processing, and data analysis
PublicationTitleAbbrev Sampl. Theory Signal Process. Data Anal
PublicationYear 2024
Publisher Springer International Publishing
Publisher_xml – name: Springer International Publishing
References JichangKSome extensions and refinements of Minc-Sathre inequalityMath. Gazette19998349612312710.2307/3618705
Bouthat, L., Mashreghi, J., Morneau-Guérin, F.: The diameter of the Birkhoff Polytope. Special Matrices (2023). Submitted
Alzer, H.: On an inequality of H. Minc and L. Sathre. J. Math. Anal. Appl. 179(2), 396–402 (1993) https://doi.org/10.1006/jmaa.1993.1358
PannikovBConvergence of Riemann sums for functions which can be represented by trigonometric series with coefficients forming a monotonic sequenceMath. Notes Acad. Sci. USSR19708581081627799010.1007/BF01146937
CadilhacLMajorization, interpolation and noncommutative Khinchin inequalitiesStudia Math.20212581126421435110.4064/sm181217-30-1
AbramovichSBarićJMatićMPečarićJOn van de Lune-Alzer’s inequalityJ. Math. Inequal.200714563587240840910.7153/jmi-01-47
Gavrea, I.: Operators of Bernstein–Stancu type and the monotonicity of some sequences involving convex functions. In: inequalities and applications. Internat. Ser. Numer. Math., 157:181–192. Birkhäuser, Basel (2009). https://doi.org/10.1007/978-3-7643-8773-0_17
ChenC-PQiFCeronePDragomirSSMonotonicity of sequences involving convex and concave functionsMath. Inequal. Appl.200362229239197460310.7153/mia-06-22
BirkhoffGThree observations on linear algebraUniv. Nac. Tucumán. Revista A.1946514715120547
QiFGeneralizations of Alzer’s and Kuang’s inequalityTamkang J. Math.2000313223227177822010.5556/j.tkjm.31.2000.396
RooinJDehghanHSome monotonicity properties of convex functions with applicationsMediterr. J. Math.2015123593604337680010.1007/s00009-014-0440-z
ButzerPLStensRLThe Euler-MacLaurin summation formula, the sampling theorem, and approximate integration over the real axisLinear Algebra Appl.1983525314115570934810.1016/0024-3795(83)80011-1
Lebesgue, H.L.: Leçons sur l’intégration et la recherche des fonctions primitives, professées Au Collège de France. Cambridge Library Collection. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511701825. Reprint of the 1904 original
SzegőGTuránPOn the monotone convergence of certain Riemann sumsPubl. Math. Debrecen1961832633513781810.5486/PMD.1961.8.3-4.10
Borwein, D., Borwein, J.M., Sims, B.: Symmetry and the monotonicity of certain Riemann sums. In: From Analysis to Visualization. Springer Proc. Math. Stat., 313:7–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36568-4_2
Szilárd, A.: Monotonicity of certain Riemann-type sums. The Teaching of Mathematics 15(2), 113–120 (2012). https://teaching.matf.bg.ac.rs/vol/tm1523
Bouthat, L., Mashreghi, J., Morneau-Guérin, F.: Monotonicity of certain left and right Riemann sums. In: recent developments in operator theory, mathematical physics and complex analysis. Oper. Theory Adv. Appl., 290, pp. 89–113. Birkhäuser, Cham (2023). https://doi.org/10.1007/978-3-031-21460-8_3
Kyrezi, I.: Monotonicity properties of Darboux sums. Real Anal. Exchange 35(1), 43–64 (2010) https://doi.org/10.14321/realanalexch.35.1.0043
Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and its applications, 2nd edn. Springer Series in Statistics. Springer, New York (2011). https://doi.org/10.1007/978-0-387-68276-1
PetrovichAYProperties of Riemann sums for functions representable by a trigonometric series with monotone coefficientsMatematicheskii Sbornik19751393360378380243
ButzerPLDodsonMMFerreiraPJSGHigginsJRSchmeisserGStensRLSeven pivotal theorems of Fourier analysis, signal analysis, numerical analysis and number theory: their interconnectionsBull. Math. Sci.201443481525327788310.1007/s13373-014-0057-3
QiFGuoB-NMonotonicity of sequences involving convex function and sequenceMath. Inequal. Appl.2006922472542225011
Turán, P.: On the zeros of the polynomials of Legendre. Časopis Pěst. Mat. Fys. 75, 113–122 (1950) https://doi.org/10.21136/CPMF.1950.123879
Riemann, B.: Ueber die Darstellbarkeit Einer Function Durch Eine Trigonometrische Reihe. Dieterich, Göttingen (1867). http://eudml.org/doc/203787
Minc, H., Sathre, L.: Some inequalities involving (r!)1/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r!)^{1/r}$$\end{document}. Proc. Edinburgh Math. Soc. 14(2), 41–46 (1964/65) https://doi.org/10.1017/S0013091500011214
Marsden, J.E., Hoffman, M.J.: Basic Complex Analysis, 2nd edn. W. H. Freeman and Company, New York (1987). https://doi.org/10.2307/3618015
BennettGJamesonGMonotonic averages of convex functionsJ. Math. Anal. Appl.20002521410430179786510.1006/jmaa.2000.7087
G Birkhoff (88_CR9) 1946; 5
88_CR23
88_CR21
PL Butzer (88_CR4) 2014; 4
K Jichang (88_CR10) 1999; 83
G Szegő (88_CR15) 1961; 8
S Abramovich (88_CR16) 2007; 1
C-P Chen (88_CR19) 2003; 6
88_CR27
88_CR24
F Qi (88_CR18) 2006; 9
B Pannikov (88_CR25) 1970; 8
L Cadilhac (88_CR5) 2021; 258
88_CR11
PL Butzer (88_CR6) 1983; 52
88_CR12
AY Petrovich (88_CR26) 1975; 139
88_CR1
88_CR2
J Rooin (88_CR22) 2015; 12
88_CR3
88_CR13
88_CR14
88_CR7
88_CR8
F Qi (88_CR17) 2000; 31
G Bennett (88_CR20) 2000; 252
References_xml – reference: BennettGJamesonGMonotonic averages of convex functionsJ. Math. Anal. Appl.20002521410430179786510.1006/jmaa.2000.7087
– reference: Turán, P.: On the zeros of the polynomials of Legendre. Časopis Pěst. Mat. Fys. 75, 113–122 (1950) https://doi.org/10.21136/CPMF.1950.123879
– reference: CadilhacLMajorization, interpolation and noncommutative Khinchin inequalitiesStudia Math.20212581126421435110.4064/sm181217-30-1
– reference: Marshall, A.W., Olkin, I., Arnold, B.C.: Inequalities: theory of majorization and its applications, 2nd edn. Springer Series in Statistics. Springer, New York (2011). https://doi.org/10.1007/978-0-387-68276-1
– reference: Marsden, J.E., Hoffman, M.J.: Basic Complex Analysis, 2nd edn. W. H. Freeman and Company, New York (1987). https://doi.org/10.2307/3618015
– reference: Kyrezi, I.: Monotonicity properties of Darboux sums. Real Anal. Exchange 35(1), 43–64 (2010) https://doi.org/10.14321/realanalexch.35.1.0043
– reference: JichangKSome extensions and refinements of Minc-Sathre inequalityMath. Gazette19998349612312710.2307/3618705
– reference: Alzer, H.: On an inequality of H. Minc and L. Sathre. J. Math. Anal. Appl. 179(2), 396–402 (1993) https://doi.org/10.1006/jmaa.1993.1358
– reference: Riemann, B.: Ueber die Darstellbarkeit Einer Function Durch Eine Trigonometrische Reihe. Dieterich, Göttingen (1867). http://eudml.org/doc/203787
– reference: Bouthat, L., Mashreghi, J., Morneau-Guérin, F.: Monotonicity of certain left and right Riemann sums. In: recent developments in operator theory, mathematical physics and complex analysis. Oper. Theory Adv. Appl., 290, pp. 89–113. Birkhäuser, Cham (2023). https://doi.org/10.1007/978-3-031-21460-8_3
– reference: SzegőGTuránPOn the monotone convergence of certain Riemann sumsPubl. Math. Debrecen1961832633513781810.5486/PMD.1961.8.3-4.10
– reference: AbramovichSBarićJMatićMPečarićJOn van de Lune-Alzer’s inequalityJ. Math. Inequal.200714563587240840910.7153/jmi-01-47
– reference: PannikovBConvergence of Riemann sums for functions which can be represented by trigonometric series with coefficients forming a monotonic sequenceMath. Notes Acad. Sci. USSR19708581081627799010.1007/BF01146937
– reference: BirkhoffGThree observations on linear algebraUniv. Nac. Tucumán. Revista A.1946514715120547
– reference: RooinJDehghanHSome monotonicity properties of convex functions with applicationsMediterr. J. Math.2015123593604337680010.1007/s00009-014-0440-z
– reference: ChenC-PQiFCeronePDragomirSSMonotonicity of sequences involving convex and concave functionsMath. Inequal. Appl.200362229239197460310.7153/mia-06-22
– reference: PetrovichAYProperties of Riemann sums for functions representable by a trigonometric series with monotone coefficientsMatematicheskii Sbornik19751393360378380243
– reference: Gavrea, I.: Operators of Bernstein–Stancu type and the monotonicity of some sequences involving convex functions. In: inequalities and applications. Internat. Ser. Numer. Math., 157:181–192. Birkhäuser, Basel (2009). https://doi.org/10.1007/978-3-7643-8773-0_17
– reference: ButzerPLStensRLThe Euler-MacLaurin summation formula, the sampling theorem, and approximate integration over the real axisLinear Algebra Appl.1983525314115570934810.1016/0024-3795(83)80011-1
– reference: Bouthat, L., Mashreghi, J., Morneau-Guérin, F.: The diameter of the Birkhoff Polytope. Special Matrices (2023). Submitted
– reference: Szilárd, A.: Monotonicity of certain Riemann-type sums. The Teaching of Mathematics 15(2), 113–120 (2012). https://teaching.matf.bg.ac.rs/vol/tm1523
– reference: QiFGeneralizations of Alzer’s and Kuang’s inequalityTamkang J. Math.2000313223227177822010.5556/j.tkjm.31.2000.396
– reference: Lebesgue, H.L.: Leçons sur l’intégration et la recherche des fonctions primitives, professées Au Collège de France. Cambridge Library Collection. Cambridge University Press, Cambridge (2009). https://doi.org/10.1017/CBO9780511701825. Reprint of the 1904 original
– reference: Minc, H., Sathre, L.: Some inequalities involving (r!)1/r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r!)^{1/r}$$\end{document}. Proc. Edinburgh Math. Soc. 14(2), 41–46 (1964/65) https://doi.org/10.1017/S0013091500011214
– reference: Borwein, D., Borwein, J.M., Sims, B.: Symmetry and the monotonicity of certain Riemann sums. In: From Analysis to Visualization. Springer Proc. Math. Stat., 313:7–20. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36568-4_2
– reference: ButzerPLDodsonMMFerreiraPJSGHigginsJRSchmeisserGStensRLSeven pivotal theorems of Fourier analysis, signal analysis, numerical analysis and number theory: their interconnectionsBull. Math. Sci.201443481525327788310.1007/s13373-014-0057-3
– reference: QiFGuoB-NMonotonicity of sequences involving convex function and sequenceMath. Inequal. Appl.2006922472542225011
– volume: 31
  start-page: 223
  issue: 3
  year: 2000
  ident: 88_CR17
  publication-title: Tamkang J. Math.
  doi: 10.5556/j.tkjm.31.2000.396
– ident: 88_CR21
  doi: 10.1007/978-3-7643-8773-0_17
– volume: 8
  start-page: 810
  issue: 5
  year: 1970
  ident: 88_CR25
  publication-title: Math. Notes Acad. Sci. USSR
  doi: 10.1007/BF01146937
– volume: 1
  start-page: 563
  issue: 4
  year: 2007
  ident: 88_CR16
  publication-title: J. Math. Inequal.
  doi: 10.7153/jmi-01-47
– ident: 88_CR3
  doi: 10.21136/CPMF.1950.123879
– ident: 88_CR14
– ident: 88_CR12
  doi: 10.1017/S0013091500011214
– volume: 252
  start-page: 410
  issue: 1
  year: 2000
  ident: 88_CR20
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.2000.7087
– ident: 88_CR11
  doi: 10.1006/jmaa.1993.1358
– ident: 88_CR7
  doi: 10.1007/978-3-031-21460-8_3
– ident: 88_CR13
  doi: 10.14321/realanalexch.35.1.0043
– volume: 8
  start-page: 326
  year: 1961
  ident: 88_CR15
  publication-title: Publ. Math. Debrecen
  doi: 10.5486/PMD.1961.8.3-4.10
– volume: 9
  start-page: 247
  issue: 2
  year: 2006
  ident: 88_CR18
  publication-title: Math. Inequal. Appl.
– volume: 6
  start-page: 229
  issue: 2
  year: 2003
  ident: 88_CR19
  publication-title: Math. Inequal. Appl.
  doi: 10.7153/mia-06-22
– volume: 83
  start-page: 123
  issue: 496
  year: 1999
  ident: 88_CR10
  publication-title: Math. Gazette
  doi: 10.2307/3618705
– volume: 12
  start-page: 593
  issue: 3
  year: 2015
  ident: 88_CR22
  publication-title: Mediterr. J. Math.
  doi: 10.1007/s00009-014-0440-z
– volume: 5
  start-page: 147
  year: 1946
  ident: 88_CR9
  publication-title: Univ. Nac. Tucumán. Revista A.
– volume: 139
  start-page: 360
  issue: 3
  year: 1975
  ident: 88_CR26
  publication-title: Matematicheskii Sbornik
– ident: 88_CR24
  doi: 10.1007/978-0-387-68276-1
– ident: 88_CR23
  doi: 10.1007/978-3-030-36568-4_2
– volume: 52
  start-page: 141
  issue: 53
  year: 1983
  ident: 88_CR6
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(83)80011-1
– ident: 88_CR1
– ident: 88_CR2
  doi: 10.1017/CBO9780511701825
– volume: 4
  start-page: 481
  issue: 3
  year: 2014
  ident: 88_CR4
  publication-title: Bull. Math. Sci.
  doi: 10.1007/s13373-014-0057-3
– volume: 258
  start-page: 1
  issue: 1
  year: 2021
  ident: 88_CR5
  publication-title: Studia Math.
  doi: 10.4064/sm181217-30-1
– ident: 88_CR8
  doi: 10.1515/spma-2023-0113
– ident: 88_CR27
  doi: 10.2307/3618015
SSID ssj0002570063
ssib054931816
ssib042110749
Score 2.2574522
Snippet This paper is dedicated to proving general theorems about the monotonicity of left and right Riemann sums, a problem first raised by Fejér in 1950. We provide...
SourceID crossref
springer
SourceType Index Database
Publisher
SubjectTerms Abstract Harmonic Analysis
Machine Learning
Mathematics
Mathematics and Statistics
Original Article
Signal,Image and Speech Processing
Title On the monotonicity of left and right Riemann sums
URI https://link.springer.com/article/10.1007/s43670-024-00088-8
Volume 22
WOSCitedRecordID wos001278993000006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2730-5724
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002570063
  issn: 2730-5716
  databaseCode: RSV
  dateStart: 20020101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8QwEB109aAHv8VvcvCmgW5Mm-Qo4uJBV1l12Vtp8wELkpVt9fc7ybYrCyLosTClZfo6L6_pvAE4T4VB0uGoVBNpKUfCorJkkmI5ljoxPDGxF2Z4L_p9ORqpp6YprGr_dm-3JGOlnje78eA1RpFTQic0Pl-5DCtIdzIMbBg8D1sU8ShpvkUFCiDEbbMICvU5zG2bjVhD6k5oioqh6ab5-TKLjLW4XRpZqLf5v_vfgo1m1UmuZzDZhiXrd2D9YW7ZWu0Ce_QEDwnCclIHv1xcnpOJI2_W1aTwhkQZTwZjPMN7ggCu9uC1d_tyc0ebgQpUIxPXNLVSFk6kJitEmVrOtCizsii4ZYYzq6Ry2qK-cBlK7C6zXeGcUQo1jXTScX21Dx0_8fYASJklypQ8uBGioOJWJaa0pssLo1MjtDyEizZp-fvMNyOfOyTHTOSYiTxmIsfoyzZnefMOVb-EH_0t_BjWWEx7-HZyAp16-mFPYVV_1uNqehbB8wV5yLl5
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB60CurBt_h2D950IY2bZHMUsVRsq9RaegvZFxRkK0309zu7TSoFEfQYmJAwO5lvvuzONwCXUaIQdBgy1YBryhCwKBchp5iOuQwUC5TvhRl2kl6Pj0bpc9UUVtSn3estSZ-p581uzGmNUcQU1wmN68uXYYUhYjnF_P7LsI4i5inNN6lAAoRxWxVBLj-7uW2zEWsI3QGNkDFU3TQ_P2YRsRa3Sz0Ktbb-9_7bsFlVneR2FiY7sKTtLmx055KtxR6ET5bgJcGwnJROLxfLczIx5E2bkuRWEU_jSX-Md1hLMICLfXht3Q_u2rQaqEAlInFJI815bpJIxXkiIs1CmYhY5DnToWKhTnlqpEZ-YWKk2M1QNxNjVJoip-GGGyZvDqBhJ1YfAhFxkCrBnBohEiqm00AJrZosVzJSieRHcFU7LXuf6WZkc4Vk74kMPZF5T2RofV37LKu-oeIX8-O_mV_AWnvQ7WSdh97jCayHfgncf5RTaJTTD30Gq_KzHBfTcx9IXzZOvF0
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oFNEH7-LdPPimYV1N2_RR1KE45_Ay9lbaXGAg2Virv9-TtJ0ORBAfC6eUnnzNl6_J-Q7AaRBJJB2GStXjijIkLMozn1OcjrnwJPOkq4Xpd6Julw8Gce9bFb877V5vSZY1DdalyRTNsdTNaeEbs75jFPnFVkXjWPN5WGD2IL3V68_9GlHMyZsvgYFiCDFcLYjsXG17uJXt1pDGPRqgeqgqa35-zCx7zW6dOkZqr_3_XdZhtVqNkssSPhswp8wmrDxMrVzzLfAfDcFLgnAdFdZHF5ftZKTJm9IFSY0kTt6TpyHeYQxBYOfb8Nq-ebm6pVWjBSqQoQsaKM5THQUyTKMsUMwXURZmacqUL5mvYh5roVB36BCld8tXrUhrGceodbjmmomLHWiYkVG7QLLQi2XGrEshCi2mYk9mSrZYKkUgI8H34KxOYDIu_TSSqXOyy0SCmUhcJhKMPq_zl1TfVv5L-P7fwk9gqXfdTjp33fsDWPbdCNjfK4fQKCbv6ggWxUcxzCfHDlOfFJ7FQQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+monotonicity+of+left+and+right+Riemann+sums&rft.jtitle=Sampling+theory%2C+signal+processing%2C+and+data+analysis&rft.au=Bouthat%2C+Ludovick&rft.date=2024-06-01&rft.pub=Springer+International+Publishing&rft.issn=2730-5716&rft.eissn=2730-5724&rft.volume=22&rft.issue=1&rft_id=info:doi/10.1007%2Fs43670-024-00088-8&rft.externalDocID=10_1007_s43670_024_00088_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2730-5716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2730-5716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2730-5716&client=summon