Duality and optimality conditions for reverse convex programs via a convex decomposition
In this paper via the so-called Fenchel–Lagrange duality, we provide necessary local optimality conditions for a reverse convex programming problem ( P ) . As is well known, this duality has been first defined for convex programming problems. So, since in general problem ( P ) is not convex even if...
Gespeichert in:
| Veröffentlicht in: | Rendiconti del Circolo matematico di Palermo Jg. 72; H. 8; S. 3917 - 3930 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cham
Springer International Publishing
01.12.2023
|
| Schlagworte: | |
| ISSN: | 0009-725X, 1973-4409 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Zusammenfassung: | In this paper via the so-called Fenchel–Lagrange duality, we provide necessary local optimality conditions for a reverse convex programming problem
(
P
)
. As is well known, this duality has been first defined for convex programming problems. So, since in general problem
(
P
)
is not convex even if the data is, we first proceed to a decomposition of an equivalent problem of
(
P
)
into a family of convex minimization subproblems. Then, by means of the decomposition and the Fenchel–Lagrange duality applied to the subproblems we provide necessary local optimality conditions for the initial problem
(
P
)
. |
|---|---|
| ISSN: | 0009-725X 1973-4409 |
| DOI: | 10.1007/s12215-023-00876-6 |