Cuts and semidefinite liftings for the complex cut polytope
We consider the complex cut polytope: the convex hull of Hermitian rank 1 matrices $$xx^\textrm{H}$$ x x H , where the elements of $$x \in \mathbb {C}^n$$ x ∈ C n are m th unit roots. These polytopes have applications in MAX-3-CUT, digital communication technology, angular synchronization and more g...
Gespeichert in:
| Veröffentlicht in: | Mathematical programming |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
09.10.2024
|
| ISSN: | 0025-5610, 1436-4646 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We consider the complex cut polytope: the convex hull of Hermitian rank 1 matrices
$$xx^\textrm{H}$$
x
x
H
, where the elements of
$$x \in \mathbb {C}^n$$
x
∈
C
n
are
m
th unit roots. These polytopes have applications in MAX-3-CUT, digital communication technology, angular synchronization and more generally, complex quadratic programming. For
$$m=2$$
m
=
2
, the complex cut polytope corresponds to the well-known cut polytope. We generalize valid cuts for this polytope to cuts for any complex cut polytope with finite
$$m>2$$
m
>
2
and provide a framework to compare them. Further, we consider a second semidefinite lifting of the complex cut polytope for
$$m=\infty $$
m
=
∞
. This lifting is proven to be equivalent to other complex Lasserre-type liftings of the same order proposed in the literature, while being of smaller size. Our theoretical findings are supported by numerical experiments on various optimization problems. |
|---|---|
| AbstractList | We consider the complex cut polytope: the convex hull of Hermitian rank 1 matrices
$$xx^\textrm{H}$$
x
x
H
, where the elements of
$$x \in \mathbb {C}^n$$
x
∈
C
n
are
m
th unit roots. These polytopes have applications in MAX-3-CUT, digital communication technology, angular synchronization and more generally, complex quadratic programming. For
$$m=2$$
m
=
2
, the complex cut polytope corresponds to the well-known cut polytope. We generalize valid cuts for this polytope to cuts for any complex cut polytope with finite
$$m>2$$
m
>
2
and provide a framework to compare them. Further, we consider a second semidefinite lifting of the complex cut polytope for
$$m=\infty $$
m
=
∞
. This lifting is proven to be equivalent to other complex Lasserre-type liftings of the same order proposed in the literature, while being of smaller size. Our theoretical findings are supported by numerical experiments on various optimization problems. |
| Author | Sotirov, Renata Anjos, Miguel F. Sinjorgo, Lennart |
| Author_xml | – sequence: 1 givenname: Lennart surname: Sinjorgo fullname: Sinjorgo, Lennart – sequence: 2 givenname: Renata orcidid: 0000-0002-3298-7255 surname: Sotirov fullname: Sotirov, Renata – sequence: 3 givenname: Miguel F. surname: Anjos fullname: Anjos, Miguel F. |
| BookMark | eNotz8tKxDAYBeAgI9iZ8QVc5QWif25tBldSvMGAG2cd0lw00jalyYDz9lbHxeHsDudbo9WYRo_QDYVbCtDcZQoUGgJMLKGiIfwCVVTwmoha1CtUATBJZE3hCq1z_gIAypWq0H17LBmb0eHsh-h8iGMsHvcxlDh-ZBzSjMunxzYNU--_sT0WPKX-VNLkt-gymD776__eoMPT43v7QvZvz6_tw55YJlghwnIJqvOmbozqllC1HGGGu47bDryTyokArgkCTBDSOcU4D4xZueuA7vgGsfOunVPOsw96muNg5pOmoH_5-szXC1__8TXnPyzMT3A |
| Cites_doi | 10.1006/eujc.1996.0020 10.1007/s10107-006-0064-6 10.1007/978-3-642-04295-9 10.1109/TIT.2007.907472 10.1137/050623802 10.1109/ICDM.2001.989507 10.1109/COMST.2015.2475242 10.1145/227683.227684 10.1007/s10107-009-0304-7 10.1007/s10898-017-0551-8 10.1109/TSP.2013.2296883 10.1137/15M1034386 10.1112/S0025579300002850 10.1090/pspum/007/0152944 10.1016/0024-3795(95)00271-R 10.1007/s00454-012-9421-9 10.1007/s10107-015-0977-z 10.1016/0024-3795(84)90207-6 10.1287/moor.2016.0813 10.1287/moor.26.2.193.10561 10.1007/BF01420337 10.1109/OJSP.2020.3020221 10.1007/s10957-021-01975-z 10.1137/17M1122025 10.1137/S1052623400366802 10.1007/s10107-016-1059-6 10.1145/3476446.3535480 10.1007/BF01100204 10.1017/9781316822708 10.1016/j.jcss.2003.07.012 10.1016/0012-365X(94)00091-V 10.1109/TAC.2009.2017144 10.1007/BF03220000 10.1016/0024-3795(90)90006-X 10.1145/3569709 10.1007/s10898-019-00813-x 10.1007/s10107-013-0738-9 10.1137/S0895479892240683 10.1016/0166-218X(93)E0175-X 10.1090/memo/0648 10.1137/17M115075X 10.1137/19M1307871 10.1137/20M1323564 10.1080/00029890.1986.11971853 10.1287/opre.36.3.493 10.1137/04061341X 10.1007/BF02523688 10.1109/JSAC.2011.110209 10.1017/CBO9780511910135 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s10107-024-02147-3 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics |
| EISSN | 1436-4646 |
| ExternalDocumentID | 10_1007_s10107_024_02147_3 |
| GroupedDBID | --Z -~C -~X .4S .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 6TJ 78A 7WY 88I 8AO 8FL 8TC 8UJ 8VB 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYXX ABAKF ABBBX ABBRH ABBXA ABDBE ABDBF ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABUWG ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACUHS ACZOJ ADHHG ADHIR ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMOZ AEMSY AENEX AEOHA AEPYU AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFFHD AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHQJS AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKVCP ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMVHM AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. B0M BA0 BAPOH BENPR BEZIV BGLVJ BGNMA BSONS CCPQU CITATION CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBA EBLON EBR EBS EBU ECS EDO EIOEI EMI EMK EPL ESBYG EST ESX FEDTE FERAY FFXSO FIGPU FNLPD FRNLG FRRFC FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K1G K60 K6~ K7- KDC KOV LAS LLZTM M0C M2P M4Y M7S MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9R PF0 PHGZM PHGZT PQBIZ PQBZA PQGLB PROAC PT4 PT5 PTHSS Q2X QOK QOS QWB R89 R9I RHV RNS ROL RPX RSV S16 S27 S3B SAP SDD SDH SDM SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TH9 TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WK8 YLTOR Z45 ZL0 ZMTXR ~02 ~8M ~EX |
| ID | FETCH-LOGICAL-c242t-4c3508bea67a8b7a8185612a3db3cb0ed58d4f0d7f40af45dd8233f22c59b0193 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001335669500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0025-5610 |
| IngestDate | Sat Nov 29 03:34:04 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c242t-4c3508bea67a8b7a8185612a3db3cb0ed58d4f0d7f40af45dd8233f22c59b0193 |
| ORCID | 0000-0002-3298-7255 |
| OpenAccessLink | https://link.springer.com/content/pdf/10.1007/s10107-024-02147-3.pdf |
| ParticipantIDs | crossref_primary_10_1007_s10107_024_02147_3 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-10-09 |
| PublicationDateYYYYMMDD | 2024-10-09 |
| PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-09 day: 09 |
| PublicationDecade | 2020 |
| PublicationTitle | Mathematical programming |
| PublicationYear | 2024 |
| References | 2147_CR15 2147_CR16 I Waldspurger (2147_CR48) 2015; 149 W Ai (2147_CR1) 2011; 128 H Fawzi (2147_CR11) 2016; 160 2147_CR7 H Fawzi (2147_CR12) 2017; 42 C Josz (2147_CR23) 2018; 28 AS Bandeira (2147_CR2) 2017; 163 YJA Zhang (2147_CR57) 2011; 29 JPR Christensen (2147_CR6) 1979; 244 2147_CR9 A Mobasher (2147_CR38) 2007; 53 2147_CR51 2147_CR10 A Ben-Tal (2147_CR4) 2001; 26 2147_CR49 R Grone (2147_CR20) 1990; 134 A Lemon (2147_CR29) 2016; 2 M Soltanalian (2147_CR45) 2013; 62 S Yang (2147_CR55) 2015; 17 MM Deza (2147_CR8) 1997 MX Goemans (2147_CR18) 2004; 68 M Laurent (2147_CR27) 1995; 223–224 J-B Lasserre (2147_CR25) 2001; 11 S Chopra (2147_CR5) 1995; 61 S Zhang (2147_CR56) 2006; 16 F Barahona (2147_CR3) 1988; 36 C Lu (2147_CR35) 2020; 1 A Lapidoth (2147_CR24) 2017 2147_CR43 2147_CR46 2147_CR39 M Laurent (2147_CR26) 1996; 151 J Löfberg (2147_CR32) 2009; 54 J Wang (2147_CR53) 2021; 31 C Lu (2147_CR33) 2018; 70 AM-C So (2147_CR44) 2007; 110 J Wang (2147_CR54) 2022; 48 J Wang (2147_CR52) 2021; 31 M Laurent (2147_CR28) 1996; 17 G Myerson (2147_CR40) 1986; 93 2147_CR36 R Grone (2147_CR19) 1984; 58 C-K Li (2147_CR30) 1994; 15 M Ramana (2147_CR41) 1995; 7 A Frieze (2147_CR14) 1997; 18 MX Goemans (2147_CR17) 1995; 42 J Wang (2147_CR50) 2022 Y Zhong (2147_CR58) 2018; 28 R Loewy (2147_CR31) 1980; 253 RT Rockafellar (2147_CR42) 1997 H Waki (2147_CR47) 2006; 17 C Lu (2147_CR34) 2019; 29 S Fiorini (2147_CR13) 2012; 48 2147_CR22 P McMullen (2147_CR37) 1970; 17 F Jarre (2147_CR21) 2020; 76 |
| References_xml | – volume: 17 start-page: 233 issue: 2 year: 1996 ident: 2147_CR28 publication-title: Eur. J. Comb. doi: 10.1006/eujc.1996.0020 – volume: 110 start-page: 93 issue: 1 year: 2007 ident: 2147_CR44 publication-title: Math. Program. doi: 10.1007/s10107-006-0064-6 – volume-title: Geometry of Cuts and Metrics year: 1997 ident: 2147_CR8 doi: 10.1007/978-3-642-04295-9 – volume-title: Convex Analysis year: 1997 ident: 2147_CR42 – ident: 2147_CR10 – volume: 53 start-page: 3869 issue: 11 year: 2007 ident: 2147_CR38 publication-title: IEEE Trans. Inf. Theory doi: 10.1109/TIT.2007.907472 – volume: 17 start-page: 218 issue: 1 year: 2006 ident: 2147_CR47 publication-title: SIAM J. Optim. doi: 10.1137/050623802 – ident: 2147_CR9 doi: 10.1109/ICDM.2001.989507 – volume: 17 start-page: 1941 year: 2015 ident: 2147_CR55 publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/COMST.2015.2475242 – volume: 42 start-page: 1115 issue: 6 year: 1995 ident: 2147_CR17 publication-title: J. ACM doi: 10.1145/227683.227684 – volume: 128 start-page: 253 issue: 1–2 year: 2011 ident: 2147_CR1 publication-title: Math. Program. doi: 10.1007/s10107-009-0304-7 – volume: 70 start-page: 171 year: 2018 ident: 2147_CR33 publication-title: J. Glob. Optim. doi: 10.1007/s10898-017-0551-8 – volume: 62 start-page: 1221 year: 2013 ident: 2147_CR45 publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2013.2296883 – volume: 28 start-page: 1017 issue: 2 year: 2018 ident: 2147_CR23 publication-title: SIAM J. Optim. doi: 10.1137/15M1034386 – volume: 17 start-page: 179 issue: 2 year: 1970 ident: 2147_CR37 publication-title: Mathematika doi: 10.1112/S0025579300002850 – ident: 2147_CR15 doi: 10.1090/pspum/007/0152944 – volume: 223–224 start-page: 439 year: 1995 ident: 2147_CR27 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(95)00271-R – volume: 48 start-page: 658 issue: 3 year: 2012 ident: 2147_CR13 publication-title: Discrete Comput. Geom. doi: 10.1007/s00454-012-9421-9 – volume: 160 start-page: 149 year: 2016 ident: 2147_CR11 publication-title: Math. Program. doi: 10.1007/s10107-015-0977-z – volume: 58 start-page: 109 year: 1984 ident: 2147_CR19 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(84)90207-6 – volume: 42 start-page: 472 issue: 2 year: 2017 ident: 2147_CR12 publication-title: Math. Oper. Res. doi: 10.1287/moor.2016.0813 – volume: 26 start-page: 193 issue: 2 year: 2001 ident: 2147_CR4 publication-title: Math. Oper. Res. doi: 10.1287/moor.26.2.193.10561 – volume: 244 start-page: 65 year: 1979 ident: 2147_CR6 publication-title: Math. Ann. doi: 10.1007/BF01420337 – volume: 1 start-page: 120 year: 2020 ident: 2147_CR35 publication-title: IEEE Open J. Signal Process. doi: 10.1109/OJSP.2020.3020221 – year: 2022 ident: 2147_CR50 publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-021-01975-z – volume: 28 start-page: 989 issue: 2 year: 2018 ident: 2147_CR58 publication-title: SIAM J. Optim. doi: 10.1137/17M1122025 – ident: 2147_CR46 – volume: 11 start-page: 796 issue: 3 year: 2001 ident: 2147_CR25 publication-title: SIAM J. Optim. doi: 10.1137/S1052623400366802 – ident: 2147_CR16 – volume: 163 start-page: 145 year: 2017 ident: 2147_CR2 publication-title: Math. Program. doi: 10.1007/s10107-016-1059-6 – ident: 2147_CR39 – ident: 2147_CR36 doi: 10.1145/3476446.3535480 – volume: 7 start-page: 33 issue: 1 year: 1995 ident: 2147_CR41 publication-title: J. Glob. Optim. doi: 10.1007/BF01100204 – volume-title: A Foundation in Digital Communication year: 2017 ident: 2147_CR24 doi: 10.1017/9781316822708 – volume: 68 start-page: 442 issue: 2 year: 2004 ident: 2147_CR18 publication-title: J. Comput. Syst. Sci. doi: 10.1016/j.jcss.2003.07.012 – volume: 151 start-page: 131 issue: 1–3 year: 1996 ident: 2147_CR26 publication-title: Discret. Math. doi: 10.1016/0012-365X(94)00091-V – ident: 2147_CR51 – volume: 54 start-page: 1007 issue: 5 year: 2009 ident: 2147_CR32 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2009.2017144 – volume: 253 start-page: 227 year: 1980 ident: 2147_CR31 publication-title: Math. Ann. doi: 10.1007/BF03220000 – ident: 2147_CR49 – volume: 134 start-page: 63 year: 1990 ident: 2147_CR20 publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(90)90006-X – ident: 2147_CR22 – volume: 48 start-page: 1 issue: 4 year: 2022 ident: 2147_CR54 publication-title: ACM Trans. Math. Softw. doi: 10.1145/3569709 – volume: 76 start-page: 913 issue: 4 year: 2020 ident: 2147_CR21 publication-title: J. Glob. Optim. doi: 10.1007/s10898-019-00813-x – volume: 149 start-page: 47 issue: 1–2 year: 2015 ident: 2147_CR48 publication-title: Math. Program. doi: 10.1007/s10107-013-0738-9 – volume: 15 start-page: 903 issue: 3 year: 1994 ident: 2147_CR30 publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/S0895479892240683 – volume: 61 start-page: 27 issue: 1 year: 1995 ident: 2147_CR5 publication-title: Discret. Appl. Math. doi: 10.1016/0166-218X(93)E0175-X – ident: 2147_CR7 doi: 10.1090/memo/0648 – volume: 29 start-page: 719 issue: 1 year: 2019 ident: 2147_CR34 publication-title: SIAM J. Optim. doi: 10.1137/17M115075X – volume: 31 start-page: 30 issue: 1 year: 2021 ident: 2147_CR53 publication-title: SIAM J. Optim. doi: 10.1137/19M1307871 – volume: 2 start-page: 1 issue: 1–2 year: 2016 ident: 2147_CR29 publication-title: Found. Trends® Optim. – volume: 31 start-page: 114 issue: 1 year: 2021 ident: 2147_CR52 publication-title: SIAM J. Optim. doi: 10.1137/20M1323564 – volume: 93 start-page: 457 issue: 6 year: 1986 ident: 2147_CR40 publication-title: Am. Math. Mon. doi: 10.1080/00029890.1986.11971853 – volume: 36 start-page: 493 issue: 3 year: 1988 ident: 2147_CR3 publication-title: Oper. Res. doi: 10.1287/opre.36.3.493 – volume: 16 start-page: 871 issue: 3 year: 2006 ident: 2147_CR56 publication-title: SIAM J. Optim. doi: 10.1137/04061341X – volume: 18 start-page: 67 issue: 1 year: 1997 ident: 2147_CR14 publication-title: Algorithmica doi: 10.1007/BF02523688 – volume: 29 start-page: 362 issue: 2 year: 2011 ident: 2147_CR57 publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2011.110209 – ident: 2147_CR43 doi: 10.1017/CBO9780511910135 |
| SSID | ssj0001388 |
| Score | 2.4308338 |
| Snippet | We consider the complex cut polytope: the convex hull of Hermitian rank 1 matrices
$$xx^\textrm{H}$$
x
x
H
, where the elements of
$$x \in \mathbb {C}^n$$
x
∈... |
| SourceID | crossref |
| SourceType | Index Database |
| Title | Cuts and semidefinite liftings for the complex cut polytope |
| WOSCitedRecordID | wos001335669500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: ABI/INFORM Collection customDbUrl: eissn: 1436-4646 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: 7WY dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/abicomplete providerName: ProQuest – providerCode: PRVPQU databaseName: ABI/INFORM Global customDbUrl: eissn: 1436-4646 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M0C dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/abiglobal providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 1436-4646 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: K7- dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1436-4646 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M7S dateStart: 20240101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest advanced technologies & aerospace journals customDbUrl: eissn: 1436-4646 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: P5Z dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1436-4646 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1436-4646 dateEnd: 20241208 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: M2P dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1436-4646 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001388 issn: 0025-5610 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07a8MwED5C6NAOfZe-0dCtFcSS7Mh0KqGhQxsKfZDN6AmG1DGxU9p_35PzaIZ2yOBBIIz5Dt33yaf7BHBljUms5oZGPnUUE56mSIKKqmAObqxPI9tE-rE7GMjhMH1uwc2_FfzQ5BaF32lM0ODvhUsCE26UzJq1Xt6XaTfiUi7uZw2iYN4h8_crVlhohU76O-t9yC5sz2UjuZvFeQ9artiHrRUzQRw9LR1YqwO47U3riqjCksp95Nb5PIhLMsp9OOdcEdSqBKeT5ki5-yJmWpNyPPqux6U7hLf-_Wvvgc4vSqAGGbamwnDUWdqppKukxgdJGJWL4iEKuuNsLK3wHdv1oqO8iK2VjHPPmIlTjRqPH0G7GBfuGIiWKKAiI1zipJBh86jjptrImPfeJidwvQAuK2d-GNmv83EAKEOAsgagjJ-uNfsMNllAN5Tn03No15Opu4AN81nn1eSyifYP9xCgMg |
| linkProvider | Springer Nature |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Cuts+and+semidefinite+liftings+for+the+complex+cut+polytope&rft.jtitle=Mathematical+programming&rft.au=Sinjorgo%2C+Lennart&rft.au=Sotirov%2C+Renata&rft.au=Anjos%2C+Miguel+F.&rft.date=2024-10-09&rft.issn=0025-5610&rft.eissn=1436-4646&rft_id=info:doi/10.1007%2Fs10107-024-02147-3&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10107_024_02147_3 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon |