Dirac cohomology on manifolds with boundary and spectral lower bounds

Along the lines of the classic Hodge–De Rham theory a general decomposition theorem for sections of a Dirac bundle over a compact Riemannian manifold is proved by extending concepts as exterior derivative and coderivative as well as elliptic absolute and relative boundary conditions for both Dirac a...

Full description

Saved in:
Bibliographic Details
Published in:SN partial differential equations and applications Vol. 4; no. 6
Main Author: Farinelli, Simone
Format: Journal Article
Language:English
Published: Cham Springer International Publishing 01.12.2023
Subjects:
ISSN:2662-2963, 2662-2971
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Along the lines of the classic Hodge–De Rham theory a general decomposition theorem for sections of a Dirac bundle over a compact Riemannian manifold is proved by extending concepts as exterior derivative and coderivative as well as elliptic absolute and relative boundary conditions for both Dirac and Dirac Laplacian operators. Dirac sections are shown to be a direct sum of harmonic, exact and coexact spinors satisfying alternatively absolute and relative boundary conditions. Cheeger’s estimation technique for spectral lower bounds of the Laplacian on differential forms is generalized to the Dirac Laplacian. A general method allowing to estimate Dirac spectral lower bounds for the Dirac spectrum of a compact Riemannian manifold in terms of the Dirac eigenvalues for a cover of 0-codimensional submanifolds is developed. Two applications are provided for the Atiyah–Singer operator. First, we prove the existence on compact connected spin manifolds of Riemannian metrics of unit volume with arbitrarily large first non zero eigenvalue, which is an already known result. Second, we prove that on a degenerating sequence of oriented, hyperbolic, three spin manifolds for any choice of the spin structures the first positive non zero eigenvalue is bounded from below by a positive uniform constant, which improves an already known result.
ISSN:2662-2963
2662-2971
DOI:10.1007/s42985-023-00264-w