Content-aware sentiment understanding: cross-modal analysis with encoder-decoder architectures
The analysis of sentiment from social media data has attracted significant attention due to the proliferation of user-generated opinions and comments on these platforms. Social media content is often multi-modal, frequently combining images and text within single posts. To effectively estimate user...
Saved in:
| Published in: | Journal of computational social science Vol. 8; no. 2 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Singapore
Springer Nature Singapore
01.05.2025
|
| Subjects: | |
| ISSN: | 2432-2717, 2432-2725 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The analysis of sentiment from social media data has attracted significant attention due to the proliferation of user-generated opinions and comments on these platforms. Social media content is often multi-modal, frequently combining images and text within single posts. To effectively estimate user sentiment across multiple content types, this study proposes a multimodal content-aware approach. It distinguishes text-dominant images, memes, and regular images, extracting embedded text from memes or text-dominant images. Using the Swin Transformer-GPT-2 (encoder-decoder) architecture, captions are generated for image analysis. The user’s sentiment is then estimated by analyzing embedded text, generated captions, and user-provided captions through a BiLSTM-LSTM (encoder-decoder) architecture and fully connected layers. The proposed method demonstrates superior performance, achieving 93% accuracy on the MVSA-Single dataset, 79% accuracy on the MVSA-Multiple dataset, and 90% accuracy on the TWITTER (Large) dataset surpassing current state-of-the-art methods. |
|---|---|
| AbstractList | The analysis of sentiment from social media data has attracted significant attention due to the proliferation of user-generated opinions and comments on these platforms. Social media content is often multi-modal, frequently combining images and text within single posts. To effectively estimate user sentiment across multiple content types, this study proposes a multimodal content-aware approach. It distinguishes text-dominant images, memes, and regular images, extracting embedded text from memes or text-dominant images. Using the Swin Transformer-GPT-2 (encoder-decoder) architecture, captions are generated for image analysis. The user’s sentiment is then estimated by analyzing embedded text, generated captions, and user-provided captions through a BiLSTM-LSTM (encoder-decoder) architecture and fully connected layers. The proposed method demonstrates superior performance, achieving 93% accuracy on the MVSA-Single dataset, 79% accuracy on the MVSA-Multiple dataset, and 90% accuracy on the TWITTER (Large) dataset surpassing current state-of-the-art methods. |
| ArticleNumber | 37 |
| Author | Sharifi, Arash Koochari, Abbas Pakdaman, Zahra |
| Author_xml | – sequence: 1 givenname: Zahra surname: Pakdaman fullname: Pakdaman, Zahra organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University – sequence: 2 givenname: Abbas orcidid: 0000-0003-0584-6470 surname: Koochari fullname: Koochari, Abbas email: koochari@iau.ac.ir organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University – sequence: 3 givenname: Arash surname: Sharifi fullname: Sharifi, Arash organization: Department of Computer Engineering, Science and Research Branch, Islamic Azad University |
| BookMark | eNp9kM1OAyEUhYmpibX2BVzxAihcYJi6M41_SRM3upUw_LSYljFA08zbO7bGpZt7zuKcm3u_SzRJffIIXTN6wyhVt0UApYxQkIRSrgQZztAUBAcCCuTkzzN1gealxI5yBg1XrJ2ij2Wfqk-VmIPJHpfRxt048D45n0s1ycW0vsM296WQXe_MFptktkOJBR9i3WCfbD9GifNHxSbbTaze1n325QqdB7Mtfv6rM_T--PC2fCar16eX5f2KWBBQiQDlhQ8dU6oRrgtM2rYDI4OSwjJmhHKdg8Z1krlFS3mQpuGMLcDwsPBtw2cITnuPd2Yf9FeOO5MHzaj-gaRPkPQISR8h6WEs8VOpjOG09ll_9vs8Plf-a30D6NRu1A |
| Cites_doi | 10.18653/v1/P19-1656 10.1109/TKDE.2023.3270940 10.1016/j.knosys.2021.106803 10.1109/ICCV48922.2021.00986 10.1145/3132847.3133142 10.1109/TMM.2023.3321435 10.1007/s11042-023-17685-9 10.32604/iasc.2023.031987 10.1007/s11042-023-18105-8 10.1145/3517139 10.1007/s11042-023-18081-z 10.1145/3503161.3548211 10.18653/v1/W19-4828 10.18653/v1/D19-1410 10.1145/3474085.3475692 10.48550/arXiv.2204.05515 10.1016/j.engappai.2023.106874 10.1007/s10462-023-10685-z 10.26599/TST.2021.9010055 10.1016/j.knosys.2019.01.019 10.1016/j.eswa.2023.122731 10.1007/s11042-023-17953-8 10.1109/TMM.2022.3160060 10.1016/j.knosys.2019.04.018 10.1016/j.chbr.2023.100328 10.1007/s10489-022-04046-6 10.18653/v1/D17-1151 10.1016/j.eswa.2024.123247 10.18653/v1/2023.acl-long.635 10.1016/j.knosys.2023.110467 10.1007/978-3-319-27674-8_2 10.1609/aaai.v38i16.29795 10.1007/s11042-024-18156-5 10.1109/TEM.2023.3271597 10.1609/aaai.v37i8.26138 10.21437/Interspeech.2012-65 10.1007/s10462-023-10633-x 10.48550/arXiv.1405.4053 10.1007/s11042-024-18748-1 10.1162/tacl_a_00288 10.1162/neco.1997.9.8.1735 10.3390/s23020661 10.1016/j.neunet.2005.06.042 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
| DBID | AAYXX CITATION |
| DOI | 10.1007/s42001-025-00374-y |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Social Sciences (General) |
| EISSN | 2432-2725 |
| ExternalDocumentID | 10_1007_s42001_025_00374_y |
| GroupedDBID | 0R~ 406 AACDK AAHNG AAIAL AAJBT AASML AATNV AATVU AAUYE ABAKF ABBRH ABDBE ABDZT ABECU ABFTV ABJNI ABKCH ABMQK ABQBU ABTEG ABTKH ABTMW ABXPI ACAOD ACDTI ACGFS ACHSB ACMLO ACOKC ACPIV ACZOJ ADHHG ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEJRE AEMSY AESKC AFBBN AFDZB AFOHR AFQWF AGDGC AGJBK AGMZJ AGQEE AGRTI AHPBZ AIAKS AIGIU AILAN AITGF AJZVZ ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ATHPR AXYYD AYFIA BGNMA CSCUP DPUIP EBLON EBS EJD FIGPU FINBP FNLPD FSGXE GGCAI H13 IKXTQ IWAJR J-C JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 RLLFE ROL RSV SJYHP SNE SNPRN SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UOJIU UTJUX UZXMN VFIZW ZMTXR AAYXX ABFSG ABRTQ ACSTC AEZWR AFHIU AHWEU AIXLP CITATION |
| ID | FETCH-LOGICAL-c242t-427e4efb17764dbf15c8b2a5f754c11a47dbd26db51d9803f5a631192a3f9e863 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001427685200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2432-2717 |
| IngestDate | Sat Nov 29 07:51:57 EST 2025 Fri May 16 03:49:46 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Sentiment analysis Large language model Transformer Image captioning Meme detection |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c242t-427e4efb17764dbf15c8b2a5f754c11a47dbd26db51d9803f5a631192a3f9e863 |
| ORCID | 0000-0003-0584-6470 |
| ParticipantIDs | crossref_primary_10_1007_s42001_025_00374_y springer_journals_10_1007_s42001_025_00374_y |
| PublicationCentury | 2000 |
| PublicationDate | 20250500 2025-05-00 |
| PublicationDateYYYYMMDD | 2025-05-01 |
| PublicationDate_xml | – month: 5 year: 2025 text: 20250500 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Journal of computational social science |
| PublicationTitleAbbrev | J Comput Soc Sc |
| PublicationYear | 2025 |
| Publisher | Springer Nature Singapore |
| Publisher_xml | – name: Springer Nature Singapore |
| References | J An (374_CR51) 2023; 126 M Jia (374_CR15) 2024; 38 374_CR13 374_CR16 C Peng (374_CR50) 2022; 27 F Huang (374_CR25) 2019; 167 374_CR21 374_CR23 K Zhang (374_CR27) 2021 Z Pakdaman (374_CR34) 2024; 83 T Sun (374_CR14) 2023; 35 B Hung (374_CR52) 2024 S Hochreiter (374_CR38) 1997; 9 374_CR46 P Přibáň (374_CR1) 2024 374_CR49 374_CR48 374_CR11 Y Qiao (374_CR12) 2023; 37 C Gan (374_CR17) 2024; 242 W Wang (374_CR47) 2020; 33 T Zhu (374_CR30) 2022; 25 R Strubytskyi (374_CR6) 2023; 12 S Saranya (374_CR10) 2023; 36 374_CR36 A Graves (374_CR37) 2005; 18 374_CR39 P Kumar (374_CR7) 2023; 53 374_CR41 374_CR40 A Yadav (374_CR26) 2023; 19 374_CR43 374_CR42 H Zhang (374_CR2) 2024; 57 374_CR45 Y Liu (374_CR19) 2023; 268 R Dey (374_CR4) 2024 J Xu (374_CR24) 2019; 178 J Lu (374_CR28) 2019; 32 T Brown (374_CR35) 2020; 33 374_CR29 374_CR32 374_CR31 374_CR33 M Danyal (374_CR5) 2024 374_CR9 374_CR8 Y Li (374_CR20) 2024; 57 T Singh (374_CR3) 2024 Z Yin (374_CR18) 2024; 83 S Hou (374_CR22) 2023; 23 T Niu (374_CR44) 2016 |
| References_xml | – ident: 374_CR9 – ident: 374_CR23 doi: 10.18653/v1/P19-1656 – volume: 35 start-page: 12605 issue: 12 year: 2023 ident: 374_CR14 publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2023.3270940 – year: 2021 ident: 374_CR27 publication-title: Knowledge-Based System doi: 10.1016/j.knosys.2021.106803 – ident: 374_CR32 doi: 10.1109/ICCV48922.2021.00986 – ident: 374_CR45 doi: 10.1145/3132847.3133142 – ident: 374_CR21 doi: 10.1109/TMM.2023.3321435 – volume: 83 start-page: 60171 issue: 21 year: 2024 ident: 374_CR18 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-17685-9 – volume: 36 start-page: 339 issue: 1 year: 2023 ident: 374_CR10 publication-title: Intelligent Automation & Soft Computing doi: 10.32604/iasc.2023.031987 – year: 2024 ident: 374_CR52 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-18105-8 – volume: 19 start-page: 1 issue: 1 year: 2023 ident: 374_CR26 publication-title: ACM Transactions on Multimedia Computing, Communications and Applications doi: 10.1145/3517139 – volume: 33 start-page: 5776 year: 2020 ident: 374_CR47 publication-title: Advances in Neural Information Processing Systems – year: 2024 ident: 374_CR3 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-18081-z – ident: 374_CR41 – ident: 374_CR11 doi: 10.1145/3503161.3548211 – ident: 374_CR42 doi: 10.18653/v1/W19-4828 – ident: 374_CR48 doi: 10.18653/v1/D19-1410 – ident: 374_CR29 doi: 10.1145/3474085.3475692 – ident: 374_CR49 doi: 10.48550/arXiv.2204.05515 – volume: 126 start-page: 106874 year: 2023 ident: 374_CR51 publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2023.106874 – volume: 57 start-page: 1 issue: 4 year: 2024 ident: 374_CR20 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-023-10685-z – ident: 374_CR31 – volume: 27 start-page: 664 issue: 4 year: 2022 ident: 374_CR50 publication-title: Tsinghua Science and Technology doi: 10.26599/TST.2021.9010055 – volume: 167 start-page: 26 year: 2019 ident: 374_CR25 publication-title: Knowledge-Based System doi: 10.1016/j.knosys.2019.01.019 – volume: 242 start-page: 122731 year: 2024 ident: 374_CR17 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122731 – ident: 374_CR36 – year: 2024 ident: 374_CR4 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-023-17953-8 – volume: 33 start-page: 1877 year: 2020 ident: 374_CR35 publication-title: Advances in neural information processing systems – volume: 25 start-page: 3375 year: 2022 ident: 374_CR30 publication-title: IEEE Transactions on Multimedia doi: 10.1109/TMM.2022.3160060 – volume: 178 start-page: 61 year: 2019 ident: 374_CR24 publication-title: Knowledge-Based System doi: 10.1016/j.knosys.2019.04.018 – volume: 32 start-page: 1 year: 2019 ident: 374_CR28 publication-title: Advances in Neural Information Processing Systems – volume: 12 year: 2023 ident: 374_CR6 publication-title: Computers in Human Behavior Reports doi: 10.1016/j.chbr.2023.100328 – volume: 53 start-page: 10096 issue: 9 year: 2023 ident: 374_CR7 publication-title: Applied Intelligence doi: 10.1007/s10489-022-04046-6 – ident: 374_CR33 – ident: 374_CR40 doi: 10.18653/v1/D17-1151 – year: 2024 ident: 374_CR1 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2024.123247 – ident: 374_CR13 doi: 10.18653/v1/2023.acl-long.635 – volume: 268 start-page: 110467 year: 2023 ident: 374_CR19 publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2023.110467 – start-page: 15 volume-title: Multimedia Modeling year: 2016 ident: 374_CR44 doi: 10.1007/978-3-319-27674-8_2 – volume: 38 start-page: 18354 issue: 16 year: 2024 ident: 374_CR15 publication-title: In Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v38i16.29795 – year: 2024 ident: 374_CR5 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-024-18156-5 – ident: 374_CR8 doi: 10.1109/TEM.2023.3271597 – volume: 37 start-page: 9507 issue: 8 year: 2023 ident: 374_CR12 publication-title: Proceedings of the AAAI Conference on Artificial Intelligence doi: 10.1609/aaai.v37i8.26138 – ident: 374_CR39 doi: 10.21437/Interspeech.2012-65 – volume: 57 start-page: 17 year: 2024 ident: 374_CR2 publication-title: Artificial Intelligence Review doi: 10.1007/s10462-023-10633-x – ident: 374_CR46 doi: 10.48550/arXiv.1405.4053 – volume: 83 start-page: 80351 issue: 34 year: 2024 ident: 374_CR34 publication-title: Multimedia Tools and Applications doi: 10.1007/s11042-024-18748-1 – ident: 374_CR43 doi: 10.1162/tacl_a_00288 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 374_CR38 publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – ident: 374_CR16 – volume: 23 start-page: 661 issue: 2 year: 2023 ident: 374_CR22 publication-title: Sensors doi: 10.3390/s23020661 – volume: 18 start-page: 602 issue: 5–6 year: 2005 ident: 374_CR37 publication-title: Neural Networks doi: 10.1016/j.neunet.2005.06.042 |
| SSID | ssib031263718 ssj0002734756 |
| Score | 2.290303 |
| Snippet | The analysis of sentiment from social media data has attracted significant attention due to the proliferation of user-generated opinions and comments on these... |
| SourceID | crossref springer |
| SourceType | Index Database Publisher |
| SubjectTerms | Big Data/Analytics Complex Systems Computational Linguistics Research Article Simulation and Modeling Social Media Social Sciences |
| Title | Content-aware sentiment understanding: cross-modal analysis with encoder-decoder architectures |
| URI | https://link.springer.com/article/10.1007/s42001-025-00374-y |
| Volume | 8 |
| WOSCitedRecordID | wos001427685200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer Online Journals customDbUrl: eissn: 2432-2725 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002734756 issn: 2432-2717 databaseCode: RSV dateStart: 20180101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aPXjxLdYXOXhQNNDNc-NNxOJBiqCWnlyymwQU3Ep3q_Tfm6TZ0oIIetrLEMK3k8wkM98XAE6VVIUqpHNemxpEmZFIYt_sIJUlMqc8D1fZ_XvR66WDgXyIpLCq6XZvSpJhp56R3ei0_QczFERT0GQZrDCvNuPP6I_9xotIgjlpdty3KOAiwjOumBLPRUlEZM_8POxihFosj4ao093433w3wXrMMuH11C22wJIpt0F7SsWFcTlX8CxqTp_vgJegUlXWSH2pkYGekRRk_-F4nvxyBcOU0ftQu3FU1DOB_i4XekFMZ4q0CV84X6GodsFz9_bp5g7FpxdQ4WJ2jSgWhhrrtak41blNWJHmWDErGC2SRFGhc425zlmiZdohlilOEpctKmKlSTnZA61yWJp9AIXRHVFoLSxPaWGxpC5pkJyRXLvcwZg2uGjgzj6mChvZTEs5YJg5DLOAYTZpg8sG7SyutuoX84O_mR-CNRx-mG9oPAKtejQ2x2C1-Kxfq9FJcLNvKbDNCQ |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5aBb34FuszBw-KBrp5bDbeRCwVaxGspSeX7CYBBbfS3Sr9927SbGlBBD3lMoQwmWQmmfm-AeBUCpnKVJTGayKNKNMCCWyLHYQ0RCQ0TNxXdq_NO52o3xePHhSWV9XuVUrS3dRTsBudlP9ghhxpChovgiVq2-zYN_pTr7IiEuCQVDfumydw4a6NK6bEYlEC7tEzP08776Hm06PO6zTX_7feDbDmo0x4PTGLTbCgsy1Qn0BxoT_OOTzznNPn2-DFsVRlBZJfcqihRSQ52n84mgW_XEG3ZPQ-UOU80vOZQPuXCy0hZimKlHYjnM1Q5DvguXnbvWkh33oBpaXPLhDFXFNtLDdVSFViApZGCZbMcEbTIJCUq0ThUCUsUCJqEMNkSIIyWpTECB2FZBfUskGm9wDkWjV4qhQ3YURTgwUtgwYRMpKoMnbQug4uKnXHHxOGjXjKpex0GJc6jJ0O43EdXFbajv1py38R3_-b-AlYaXUf2nH7rnN_AFax2zxb3HgIasVwpI_AcvpZvObDY2dy38_6z-0 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwEA86RXzxW5yfefBB0bA1SZvGN5kOxTGGH2NPlrRJQMFtrJ2y_94kbccGIohPeTmOcLn0rrn7_Q6AU8FFIhJunFeHClFfccSxbXbgQhMe0yB2T9ndFmu3w16Pd2ZQ_K7bvSxJ5pgGy9LUz2pDqWtT4BvNW4GwjxyBCposgiVq_mRsU9fjU7f0KOLhgJRf3_eCzIW5ka6YEotL8ViBpPlZ7Xy0mi-VugjUXP__3jfAWpF9wuvcXTbBgupvgWoO0YXFNU_hWcFFfb4NXhu5biS-xEhBi1Ry4wDgeBYUcwXd9tHHQBo9ouA5gfaNF1qiTCOKpHIrnK1cpDvgpXn73LhDxUgGlJhYniGKmaJKW86qgMpYe34Sxlj4mvk08TxBmYwlDmTse5KHdaJ9ERDPZJGCaK7CgOyCSn_QV3sAMiXrLJGS6SCkicacmmSCBz6JpckplKqCi9L00TBn3oimHMvOhpGxYeRsGE2q4LK0fFTcwvQX8f2_iZ-Alc5NM2rdtx8OwCp2Z2d7Hg9BJRuN1RFYTj6zt3R07LzvG1GE2NE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Content-aware+sentiment+understanding%3A+cross-modal+analysis+with+encoder-decoder+architectures&rft.jtitle=Journal+of+computational+social+science&rft.au=Pakdaman%2C+Zahra&rft.au=Koochari%2C+Abbas&rft.au=Sharifi%2C+Arash&rft.date=2025-05-01&rft.issn=2432-2717&rft.eissn=2432-2725&rft.volume=8&rft.issue=2&rft_id=info:doi/10.1007%2Fs42001-025-00374-y&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s42001_025_00374_y |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2432-2717&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2432-2717&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2432-2717&client=summon |