An approximation algorithm for the k-generalized Steiner forest problem

In this paper, we introduce the k -generalized Steiner forest ( k -GSF) problem, which is a natural generalization of the k -Steiner forest problem and the generalized Steiner forest problem. In this problem, we are given a connected graph G = ( V , E ) with non-negative costs c e for the edges e ∈...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Optimization letters Ročník 15; číslo 4; s. 1475 - 1483
Hlavní autoři: Gao, Jiawen, Gao, Suogang, Liu, Wen, Wu, Weili, Du, Ding-Zhu, Hou, Bo
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.06.2021
Témata:
ISSN:1862-4472, 1862-4480
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we introduce the k -generalized Steiner forest ( k -GSF) problem, which is a natural generalization of the k -Steiner forest problem and the generalized Steiner forest problem. In this problem, we are given a connected graph G = ( V , E ) with non-negative costs c e for the edges e ∈ E , a set of disjoint vertex sets V = { V 1 , V 2 , … , V l } and a parameter k ≤ l . The goal is to find a minimum-cost edge set F ⊆ E that connects at least k vertex sets in V . Our main work is to construct an O ( l ) -approximation algorithm for the k -GSF problem based on a greedy approach and an LP-rounding technique.
ISSN:1862-4472
1862-4480
DOI:10.1007/s11590-021-01727-y